RESEARCH PAPER
Pre-service teachers’ perceptions about the contributions of field work and construction of a physical model to modelling aquifers
,
 
 
 
More details
Hide details
1
Facultad de Educación de Bilbao, University of the Basque Country, Leioa, SPAIN
 
2
IES Zabalgana BHI, Vitoria-Gasteiz, SPAIN
 
 
Online publication date: 2024-03-14
 
 
Publication date: 2024-04-01
 
 
EURASIA J. Math., Sci Tech. Ed 2024;20(4):em2420
 
KEYWORDS
ABSTRACT
Teachers are crucial to implement innovative activities in the classroom and to make them effective for their students’ learning. Teachers’ beliefs have been found to condition the extent to which and the way in which they carry out certain activities. This study analyses the beliefs of 73 pre-service teachers (two cohorts) about two resources (fieldwork and physical model) used in an aquifer modelling sequence in which they had participated. Their perceptions are compared with the hypothetical purposes of the resources in a modelling process. The data analyzed were the written reflections at the end of the activities. Both resources were rated very positively. Practically all participants referred to contributions to learning and many made metacognitive reflections. The results show that both resources met the expectations about their contribution to modelling. The implications for future design of modelling activities are discussed.
 
REFERENCES (54)
1.
Adúriz-Bravo, A., Gómez, A., Márquez, C., & Sanmartí, N. (2005). La mediación analógica en la ciencia escolar. Propuesta de la “función modelo teórico” [Analogical mediation in school science. Proposal of the “theoretical model function”]. Enseñanza de las Ciencias [Science Teaching].
 
2.
Aguilera D. (2018). La salida de campo como recurso didáctico para enseñar ciencias. Una revisión sistemática [Field trip as a didactic resource to teach sciences. A systematic review]. Revista Eureka Sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Science Teaching and Dissemination], 15(3), 3103/1-3103/17. https://doi.org/10.25267/Rev_E....
 
3.
Almquist, H., Stanley, G., Blank, L., Hendrix, M., Rosenblatt, M., Hanfling, S., & Crews, J. (2011). An integrated field-based approach to building teachers’ geoscience skills. Journal of Geoscience Education, 59(1), 31-40. https://doi.org/10.5408/1.3543....
 
4.
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Pearson.
 
5.
Areljung, S., Due, K., Ottander, C., Skoog, M., & Sundberg, B. (2021). Why and how teachers make use of drawing activities in early childhood science education. International Journal of Science Education, 43(13), 2127-2147. https://doi.org/10.1080/095006....
 
6.
Bahamonde, N., & Gómez Galindo, A. A. (2016). Caracterización de modelos de digestión humana a partir de sus representaciones y análisis de su evolución en un grupo de docentes y auxiliares académicos [Characterization of human digestion models from its representations and analysis of its progress in a group of teachers and supporting academic team]. Enseñanza de las Ciencias [Science Teaching], 34(1), 129-147. https://doi.org/10.5565/rev/en....
 
7.
Behrendt, M., & Franklin, T. (2014). A review of research on school field trips and their value in education. International Journal of Environmental & Science Education, 9(3), 235-245. https://doi.org/10.12973/ijese....
 
8.
Bulterman-Bos, J. (2008). Will a clinical approach make education research more relevant for practice? Educational Researcher, 37(7), 412-420. https://doi.org/10.3102/2F0013....
 
9.
Carrier, S. J. (2009). The effects of outdoor science lessons with elementary school students on preservice teachers’ self-efficacy. Journal of Elementary Science Education, 21(2), 35-48. https://doi.org/10.1007/BF0317....
 
10.
Carrier, S. J., Tugurian, L. P., & Thomson, M. M. (2013). Elementary science indoors and out: Teachers, time, and testing. Research in Science Education, 43, 2059-2083. https://doi.org/10.1007/s11165....
 
11.
Dickerson, D. L., Penick, J. E., Dawkins, K. R., & Van Sickle, M. (2007). Groundwater in science education. Journal of Science Teacher Education, 18(1), 45-61. https://doi.org/10.1007/s10972....
 
12.
Donaldson, T., Fore, G. A., Filippelli, G. M., & Hess, J. L. (2020). A systematic review of the literature on situated learning in the geosciences: Beyond the classroom. International Journal of Science Education, 42(5), 722-743. https://doi.org/10.1080/095006....
 
13.
Egger, A. (2019). The field as touchstone. Journal of Geoscience Education, 67(2), 97-99. https://doi.org/10.1080/108999....
 
14.
Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp 119-161). Macmillan.
 
15.
Fang, Z. (1996). A review of research on teacher beliefs and practices. Educational Research, 38(1), 47-65. https://doi.org/10.1080/001318....
 
16.
Fedesco, H., Cavin, D., & Henares, R. (2020). Field-based learning in higher education. Journal of the Scholarship of Teaching and Learning, 20(1), 65-84. https://doi.org/10.14434/josot....
 
17.
Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd-grade students’ model-driven explanation-construction. Journal of Research in Science Teaching, 52(7), 895-921. https://doi.org/10.1002/tea.21....
 
18.
García, B., & Mateos, A. (2018). Comparación entre la realización de maquetas y la visualización para mejorar la alfabetización visual en anatomía humana en futuros docentes [Comparison between the creation of models and visualization to enhance visual literacy in human anatomy in preservice teachers]. Revista Eureka Sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Science Teaching and Dissemination], 15(3), 3605. https://doi.org/10.25267/Rev_E....
 
19.
Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Ed.), Visualization in science education. Models and modeling in science education (pp. 9-27). Springer. https://doi.org/10.1007/1-4020....
 
20.
Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Springer. https://doi.org/10.1007/978-3-....
 
21.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert, & C. J. Boulter (Eds.), Developing models in science education (pp. 3-17). Springer. https://doi.org/10.1007/978-94....
 
22.
Gómez, A. A., Sanmartí, N., & Pujol, R. M. (2007). Fundamentación teórica y diseño de una unidad didáctica para la enseñanza del modelo ser vivo en la escuela primaria [Theoretical foundations and design of a teaching unit to teach the model of living being in primary school]. Enseñanza de las Ciencias [Science Teaching], 25(3), 325-340. https://doi.org/10.5565/rev/en....
 
23.
Granit-Dgani, D., Kaplan, A., & Flum, H. (2017). Theory-based assessment in environmental education: A tool for formative evaluation. Environmental Education Research, 23(2), 269-299. https://doi.org/ 10.1080/13504622.2016.1144172.
 
24.
Gray, K. R., Owens, K. D., Steer, D. N., McConnell, D. A., & Knight, C. C. (2011). An exploratory study using hands-on physical models in a large introductory Earth science classroom: Student attitudes and lessons learned. Electronic Journal of Science Education, 12(2), 1-23.
 
25.
Guy-Gaytán, C., Gouvea, J. S., Griesemer, C., & Passmore, C. (2019). Tensions between learning models and engaging in modeling: Exploring implications for science classrooms. Science & Education, 28(1), 843-864. https://doi.org/10.1007/s11191....
 
26.
Hatton, N., & Smith, D. (1995). Reflection in teacher education: Towards definitions and implementation. Teaching and Teacher Education, 11, 33-49. https://doi.org/10.1016/0742-0....
 
27.
Jiménez-Tenorio, N., Aragón Núñez, L., & Oliva Martínez, J. M. (2016). Percepciones de estudiantes para maestros de educación primaria sobre los modelos analógicos como recurso didáctico [Perceptions of students for future primary school teachers about analog models as a didactic resource]. Enseñanza de las Ciencias [Science Teaching], 34(3), 91-112. https://doi.org/10.5565/rev/en....
 
28.
Kastens, K. A., & Rivet, A. (2010). Using analogical mapping to assess the affordances of scale models used in Earth and environmental science education. In C. Hölscher (Ed.), Spatial cognition VII (pp. 112-124). Springer-Verlag. https://doi.org/10.1007/978-3-....
 
29.
Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling based teaching. International Journal of Science Education, 31(5), 603-630. https://doi.org/10.1080/095006....
 
30.
Maiorca, C., Martin, J., Burton, M., Roberts, T., & Tripp, L. O. (2023). Model-eliciting activities: Pre-service teachers’ perceptions of integrated STEM. Education Sciences, 13(12), 1247. https://doi.org/10.3390/educsc....
 
31.
Mena-Marcos, J., García-Rodriguez, M.-L., & Tillema, H. (2012). Student teacher reflective writing: What does it reveal? European Journal of Teacher Education, 36(2), 147-163. https://doi.org/10.1080/026197....
 
32.
Miller, A. R., & Kastens, K. A. (2018). Investigating the impacts of targeted professional development around models and modeling on teachers’ instructional practice and student learning. Journal of Research in Science Teaching, 55(5), 641-663. https://doi.org/10.1002/tea.21....
 
33.
Mogk, D. W., & Goodwin, C. (2012). Learning in the field: Synthesis of research on thinking and learning in the geosciences. In K. A. Kastens, & C. A. Manduca (Eds.), Earth and mind II: A synthesis of research on thinking and learning in the geosciences (pp. 131-163). Geological Society of America. https://doi.org/10.1130/2012.2...).
 
34.
Ng, C., Graham, S., Renshaw, P., Cheung, A., & Mak, B. (2024). Australian grades 4 to 6 teachers’ beliefs and practices about teaching writing to low SES students. International Journal of Educational Research, 124, 102304. https://doi.org/10.1016/j.ijer....
 
35.
NRC. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
 
36.
Nugent, G., Toland, M. D., Levy, R., Kunz, G., Harwood, D., Green, D., & Kitts, K. (2012). The impact of an inquiry-based geoscience field course on pre-service teachers. Journal of Science Teacher Education, 23, 503-529. https://doi.org/10.1007/s10972....
 
37.
Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/095006....
 
38.
Orion, N., & Hofstein, A. (1991). The measurement of students’ attitudes towards scientific field trips. Science Education, 75(5), 513-523. https://doi.org/10.1002/sce.37....
 
39.
Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177-196. https://doi.org/10.1007/s10972....
 
40.
Prain, V. (2019). Future research in learning with, through and from scientific representations. In V. Prain, & B. Hand (Eds.), Theorizing the future of science education research (pp. 151-168). Springer. https://doi.org/10.1007/978-3-....
 
41.
Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751-2773. https://doi.org/10.1080/095006....
 
42.
Sáez-Bondía, M. J., & Cortés-Gracia, A. L. (2019). ¿Cómo cambian las ideas de los estudiantes de máster de profesorado sobre una actividad práctica de campo tras su vídeo-análisis y discusión en pequeños grupos? [How do change pre-service teachers’ ideas about a fieldwork activity after its video-analysis and discussion in small groups?] Revista Eureka Sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Science Teaching and Dissemination], 16(2), 2602. https://doi.org/10.25267/Rev_E....
 
43.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20....
 
44.
Seijas, N., & Uskola, A. (2022). Revision and manipulation of physical models as tools for developing the aquifer model by Preservice Elementary Teachers. International Journal of Science Education, 44(11), 1715-1737. https://doi.org/10.1080/095006....
 
45.
Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424-446. https://doi.org/10.1002/sce.20....
 
46.
Steer, D. N., Knight, C. C., Owens, K. D., & McConnell, D. A. (2005). Challenging students ideas about earth’s interior structure using a model-based, conceptual change approach in a large class setting. Journal of Geoscience Education, 53(4), 415-421. https://doi.org/10.5408/1089-9....
 
47.
Torres, J., & Vasconcelos, C. (2016). Models in geoscience classes: How can teachers use them? In C. Vasconcelos (Ed.), Geoscience education (pp. 25-41). Springer. https://doi.org/10.1007/978-3-....
 
48.
Uskola, A., & Seijas, N. (2023). Use of data obtained in the field and its contribution to the process of construction of the geological change model by Preservice Elementary Teachers. Research in Science and Technological Education, 41(4), 1330-1349. https://doi.org/10.1080/026351....
 
49.
Uskola, A., Zamalloa, T., & Achurra, A. (2022). Using multiple strategies in deepening the understanding of the digestive system. Journal of Biological Education. Advance online publication. https://doi.org/10.1080/002192....
 
50.
Vartuli, S. (2005). Beliefs: The heart of teaching. Young Children, 60(5), 76-86.
 
51.
Vo, T., Forbes, C., Zangori, L., & Schwarz, C. V. (2019). Longitudinal investigation of primary in-service teachers’ modelling the hydrological phenomena. International Journal of Science Education, 41(18), 2788-2807. https://doi.org/10.1080/095006....
 
52.
Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Science Education, 87(1), 112-143. https://doi.org/10.1002/sce.10....
 
53.
Yang, J., Ozbek, G., & Cho, S. (2023). Teachers’ beliefs and their influence on math instructions for gifted English learners. Education Sciences, 13(7), 728. https://doi.org/10.3390/educsc....
 
54.
Zembal-Saul, C. (2009). Learning to teach elementary school science as argument. Science Education, 93(4), 687-719. https://doi.org/10.1002/sce.20....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top