RESEARCH PAPER
Preservice Chemistry Teachers’ Epistemic Beliefs After a Student-Centred Approach Training Programme
 
More details
Hide details
1
University of Murcia, SPAIN
 
 
Publication date: 2021-11-19
 
 
EURASIA J. Math., Sci Tech. Ed 2021;17(12):em2045
 
KEYWORDS
ABSTRACT
Recent studies in science education have recognized a possible link between teachers’ beliefs about scientific knowledge and its practice in the classroom. Therefore, it is essential to promote the evolution of the pre-service teachers’ initial beliefs about methodologies for the teaching of chemistry in accordance with the discipline foundations and current recommendations on science teaching. We present the implementation and evaluation of a sequence of activities with a student-centred teaching approach for the training of pre-service science secondary education teachers. Inquiry, modelling, argumentation, as well as game-based learning are examples of the methodologies used. The results show a change of orientation from the epistemic beliefs prior to the programme implementation and highlight significant differences with respect to the relevance given by the teachers to carrying out research activities. For future teachers to develop professional competence, it is necessary to offer them opportunities to experience alternative methodologies during their training.
 
REFERENCES (47)
1.
Abd-El-Khalick, F. (2012). Teaching with and about nature of science, and science teacher knowledge domains. Science and Education, 22(9), 2087-2107. https://doi.org/10.1007/s11191....
 
2.
Acevedo-Díaz, J. A., García-Carmona, A., & Aragón, M. M. (2017). Historia de la ciencia para ensenar naturaleza de la ciencia: una estrategia para la formación inicial del profesorado de ciencia [History of science to teach nature of science: a strategy for the initial training of science teachers]. Educación Química, 28, 140-146. https://doi.org/10.1016/j.eq.2....
 
3.
Annetta, L., Lamb, R., Minogue, J., Folta, E., Holmes, S., Vallett, D., & Cheng, R. (2014). Safe science classrooms: Teacher training through serious educational games. Information Sciences, 264, 61-74. https://doi.org/10.1016/j.ins.....
 
4.
Bayram-Jacobs, D., Henze, I., Evagorou, M., Shwartz, Y., Aschim, E. L., Alcaraz-Dominguez, S., Barajas, M., & Dagan, E. (2019). Science teachers’ pedagogical content knowledge development during enactment of socioscientific curriculum materials. Journal of Research in Science Teaching, 56(9), 1-27. https://doi.org/10.1002/tea.21....
 
5.
Bellová, R., Melichercíková, D., & Tomcík, P. (2017). Possible reasons for low scientific literacy of slovak students in some natural science subjects. Research in Science & Technological Education, 36(2), 226-242. https://doi.org/10.1080/026351....
 
6.
Berry, A., Depaepe, F., & Van Driel, J. (2016). Pedagogical content knowledge in teacher education. In J. Loughran, & M. Hamilton (Eds.), International Handbook of Teacher Education, 1, 347-386. Springer. https://doi.org/10.1007/978-98....
 
7.
Caamaño, A. (2018). Enseñar química en contexto: un recorrido por los proyectos de química en contexto desde la década de los 80 hasta la actualidad [Teaching chemistry in context: a tour of chemistry projects in context from the 1980s to today]. Educación Química, 29, 21-54. https://doi.org/10.22201/fq.18....
 
8.
Christenson, N., & Chang Rundgren, S. N. (2014). A framework for teachers’ assessment of socio-scientific argumentation: an example using the GMO issue. Journal of Biological Education, 49(2), 204-212. https://doi.org/10.1080/002192....
 
9.
Couso, D. (2013). La elaboración de unidades didácticas competenciales [The development of competency teaching units]. Alambique, 74, 12-24.
 
10.
Crujeiras Pérez, B., & Jiménez Aleixandre, M. P. (2018). Influencia de distintas estrategias de andamiaje para promover la participación del alumnado de secundaria en las prácticas científicas [Influence of different scaffolding strategies to promote the participation of secondary school students in scientific practices]. Enseñanza de las ciencias, 36(2), 23-42. https://doi.org/10.5565/rev/en....
 
11.
Crujeiras, B., & Jiménez, M. P. (2015). Desafíos planteados por las actividades abiertas de indagación en el laboratorio: articulación de conocimientos teóricos y prácticos en las prácticas científicas [Challenges posed by open inquiry activities in the laboratory: articulation of theoretical and practical knowledge in scientific practices]. Enseñanza de las Ciencias, 33(1), 63-84. https://doi.org/10.5565/rev/en....
 
12.
Crujeiras, B., Jiménez Aleixandre, M. P., & Gallástegui, J. R. (2013) Indagación en el laboratorio de Química. Secuencia de actividades en que el alumnado de 3º y 4º de ESO diseñan experimentos [Inquiry in the Chemistry laboratory. Sequence of activities in which 3rd and 4th ESO students design experiments]. Alambique, 74, 49-56.
 
13.
Cruz-Guzmán, M., García-Carmona, A., & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education, 39(13), 1755-1774. https://doi.org/10.1080/095006....
 
14.
Donnelly, D. F., McGarr, O., & O’Reilly, J. (2014). ‘Just be quiet and listen to exactly what he’s saying’: Conceptualising power relations in inquiry-oriented classrooms. International Journal of Science Education, 36(12), 2029-2054. https://doi.org/10.1080/095006....
 
15.
Erduran S., & Kaya E. (2019). Epistemic Beliefs and Teacher Education. In: Transforming Teacher Education Through the Epistemic Core of Chemistry. Science: Philosophy, History and Education. Springer. https://doi.org/10.1007/978-3-....
 
16.
Franco, A. J., & Oliva, J. M. (2013). Diseño de una unidad didáctica sobre los elementos químicos [Design of a teaching unit on chemical elements]. Alambique, 74, 57-67.
 
17.
Franco-Mariscal, A. J., Blanco-López, A., & España-Ramos, E. (2014). El desarrollo de la competencia científica en una unidad didáctica sobre la salud bucodental. Diseño y análisis de tareas [The development of scientific competence in a teaching unit on oral health. Task design and analysis]. Enseñanza de las Ciencias, 32(3), 649-667. https://doi.org/10.5565/rev/en....
 
18.
García Martínez, N., García Martínez, S., Andreo Martínez, P., & Almela Ruiz, L. (2018). Ciencia en la cocina. Una propuesta innovadora para enseñar Física y Química en educación secundaria [Science in the kitchen. An innovative proposal to teach Physics and Chemistry in secondary education]. Enseñanza de las Ciencias, 36(3), 179-198. https://doi.org/10.5565/rev/en....
 
19.
Gauche, R., Ribeiro da Silva, R., de Aguiar Baptista, J., Luiz Pereira dos Santos, W., de Souza Mól, G., & Fernandes Lootens Machado, P. (2007). Formación de profesores de química: concepciones y propuestas [Chemistry teacher training: conceptions and proposals]. Educación Química, 18(1), 30-33. https://doi.org/10.22201/fq.18....
 
20.
Jaber, L. Z., & Hammer, D. (2016). Learning to feel like a scientist. Science Education, 100(2), 189-220. https://doi.org/10.1002/sce.21....
 
21.
Jiménez-Liso, M. R., Gómez-Macario, H., Martínez-Chico, M., Garrido-Espeja, A., & López-Gay Lucio-Villegas, R. (2020a). Egagrópilas como fuente de pruebas en una indagación. Percepciones de los estudiantes sobre lo que aprenden y sienten [Awls pellets as a source of evidence in an inquiry. Students’ perceptions of what they learn and feel]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(1) 1203-16. https://doi.org/10.25267/Rev_E....
 
22.
Jiménez-Liso, M. R., López-Banet, L., & Dillon, J. (2020b). Changing how we teach acid-base chemistry: A proposal grounded in studies of the history and nature of science education. Science & Education, 29, 1291–1315. https://doi.org/10.1007/s11191....
 
23.
Jimenez-Liso, M. R., Martinez Chico, M., Avraamidou, L., & López-Gay Lucio-Villegas, R. (2019). Scientific practices in teacher education: the interplay of sense, sensors, and emotions. Research in Science and Technological Education, 39(1), 44-67. https://doi.org/10.1080/026351....
 
24.
Jiménez-Liso, M. R., Martínez-Chico, M., & Salmerón-Sánchez, E. (2018). Chewing gum and pH level of the mouth: a model-based inquiry sequence to promote scientific practices. World Journal of Chemical Education, 6(3), 113-116. https://doi.org/10.12691/wjce-....
 
25.
Kitchen J., & Petrarca D. (2016). Approaches to teacher education. In J. Loughran, & M. Hamilton (Eds.), International Handbook of Teacher Education. Springer. https://doi.org/10.1007/978-98....
 
26.
Lantz, O., & Kass, H. (1987). Chemistry teachers’ functional paradigms. Science Education, 71, 117-134. https://doi.org/10.1002/sce.37....
 
27.
López, V., & Domenech-Casal, J. (2018). Juegos y gamificación en las clases de ciencia: ¿una oportunidad para hacer mejor clase o para hacer mejor ciencia? [Games and gamification in science classes: an opportunity to do better class or to do better science?]. Ludus Scientiae, 2(1), 34-44. https://doi.org/10.30691/relus....
 
28.
López-Banet, L., Aguilera, D., Jiménez-Liso, M. R., & Perales-Palacios, F. J. (2021a). Emotional and cognitive preservice science teachers’ engagement while living a model-based inquiry science technology engineering mathematics sequence about acid-base. Frontiers in Psychology, 12, 1-9. https://doi.org/10.3389/fpsyg.....
 
29.
López-Banet, L., Perales, F. J., & Jimenez-Liso, M. R. (2021b). STEAM views from a need: the case of the chewing gum and pH sensopill. Journal for the Study of Education and Development, 44(4), 909-941. https://doi.org/10.1080/021037....
 
30.
López-Banet, L., Ruiz González, C., & Ayuso Fernández, E. (2020). Relationships between knowledge, attitudes and interests of Spanish pre-university students in relation to different areas of biotechnology. Eurasia Journal of Mathematics, Science and Technology Education, 16(12), em1916. https://doi.org/10.29333/ejmst....
 
31.
Markic, S., & Eilks, I. (2008). A case study on German first year chemistry student teachers’ beliefs about chemistry teaching, and their comparison with student teachers from other science teaching domains. Chemistry Education Research and Practice, 9, 25-34. https://doi.org/10.1039/B80128....
 
32.
Markic, S., Eilks, I., & Valanides, N. (2008). Developing a tool to evaluate differences in beliefs about science teaching and learning among freshman science student teachers from different science teaching domains: a case study. Eurasia Journal of Mathematics, Science & Technology Education, 4(2), 109-120. https://doi.org/10.12973/ejmst....
 
33.
Martínez-Chico, M., López-Gay Lucio-Villegas, R., & Jiménez-Liso, M. R. (2014). La indagación en las propuestas de formación inicial de maestros: análisis de entrevistas a formadores de Didáctica de las Ciencias Experimentales [The inquiry into the initial teacher training proposals: analysis of interviews with trainers of Didactics of Experimental Sciences]. Enseñanza de las Ciencias, 32(3), 591-608. https://doi.org/10.5565/rev/en....
 
34.
Martínez-Carmona, M., & López-Banet, L. (2021). Unidad didáctica sobre los cambios químicos que intervienen en el efecto invernadero [Didactic unit on the chemical changes involved in the greenhouse effect]. Ápice. Revista de Educación Científica, 5(2).
 
35.
Mehta, G., Yam, V. W. W., Krief, A., Hopf, H., & Matlin, S. A. (2018). The chemical sciences and equality, diversity, and inclusion. Angewandte Chemie-International Edition, 57(45), 14690-14698. https://doi.org/10.1002/anie.2....
 
36.
National Research Council (NRC) (2003). Beyond the molecular frontier: challenges for chemistry and chemical engineering. National Academy Press.
 
37.
Prins, G. T., Bulte, A. M. W., & Pilot, A. (2018). Designing context-based teaching materials by transforming authentic scientific modelling practices in chemistry. International Journal of Science Education, 40(10), 1108-1135. https://doi.org/10.1080/095006....
 
38.
Rivero, A., Hamed, S., Delord, G., & Porlán, R. (2020). Las concepciones de docentes universitarios de ciencias sobre los contenidos [The conceptions of university science teachers about the contents]. Enseñanza de las Ciencias, 38(3), 15-35. https://doi.org/10.5565/rev/en....
 
39.
Rodríguez-Arteche, I., & Martínez-Aznar, M. M. (2018) Evaluación de una propuesta para la formación inicial del profesorado de Física y Química a través del cambio en las creencias de los participantes [Evaluation of a proposal for the initial training of physics and chemistry teachers through the change in the beliefs of the participants]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 15(1), 1601. https://doi.org/10.25267/Rev_E....
 
40.
Sanmartí, N. (2007). 10 ideas clave. Evaluar para aprender [10 key ideas. Assess to learn]. Graó.
 
41.
Schwarz, C.V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching. Science Education, 91, 158-186. https://doi.org/10.1002/sce.20....
 
42.
Sosu, E. M., & Gray, D. S. (2012). Investigating change in epistemic beliefs: An evaluation of the impact of student teachers’ beliefs on instructional preference and teaching competence. International Journal of Educational Research, 53, 80-92. https://doi.org/10.1016/j.ijer....
 
43.
Talanquer, V. (2013). School chemistry: The need for transgression. Science and Education, 22, 1757-1773. https://doi.org/10.1007/s11191....
 
44.
UNESCO (2019). Descifrar el código: la educación de las niñas y las mujeres en ciencias, tecnología, ingeniería y matemáticas (STEM) [Cracking the code: girls’ and women’s education in Science, Technology, Engineering, and Mathematics (STEM)]. https://unesdoc.unesco.org/ark....
 
45.
United Nations (2020). Objetivos de desarrollo sostenible [Sustainable development goals]. https://www.un.org/sustainable....
 
46.
Vázquez-Alonso, A., & Manassero-Mas, M. A. (2016). Juegos para enseñar la naturaleza del conocimiento científico y tecnológico [Games to teach the nature of scientific and technological knowledge]. Educar, 53(1), 149-170. https://doi.org/10.5565/rev/ed....
 
47.
Zidny, R., Ningtias Laraswati, A., & Eilks, I. (2021). A case study on students’ application of chemical concepts and use of arguments in teaching on the sustainability-oriented chemistry issue of pesticides use under inclusion of different scientific worldviews. EURASIA Journal of Mathematics, Science and Technology Education, 17(7), em1981. https://doi.org/10.29333/ejmst....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top