SPECIAL ISSUE PAPER
Using Reading Strategy Training to Foster Students’ Mathematical Modelling Competencies: Results of a Quasi-Experimental Control Trial
 
More details
Hide details
1
Leuphana University Lüneburg, Germany
 
2
University of Hamburg, Germany
 
 
Publication date: 2017-06-21
 
 
EURASIA J. Math., Sci Tech. Ed 2017;13(7b):4057-4085
 
KEYWORDS
ABSTRACT
Ever since the national standards for teaching and learning mathematics in Germany were published, investigation of ways to support students’ acquisition of mathematical competencies has increased. Results of these studies have been of special interest in empirical educational research. In this context, several recent studies have focused on the enhancement of students’ reading comprehension skills as a means of supporting students’ development of subject-specific competencies. Taking into account previous research, the empirical research project FaSaF investigated to what extent students’ mathematical modelling competencies can be fostered using a 15-week training in reading strategy. Treatment effects have been investigated in three conditions: EC A, integrated reading strategy training; EC B, separate reading strategy training; and EC C, no reading strategy training. Data from German secondary school students (N = 380) who were about 13 years old were analyzed. The results indicate that students who have participated in reading strategy training experience an increase in mathematical modelling competencies but that the same increase can also be observed in students who have not participated in reading strategy training. Thus, the issue of fostering the acquisition of modelling competencies using reading strategy training is still open for debate.
 
REFERENCES (72)
1.
Abedi, J., & Lord, C. (2001). The language factor in mathematics test. Applied Measurement in Education, 14(3), 219-234. doi: 10.1207/S15324818AME1403_2.
 
2.
Artelt, C., Schiefele, U., Schneider, W., & Stanat, P. (2002). Leseleistungen deutscher Schülerinnen und Schüler im internationalen Vergleich: Ergebnisse und Erklärungsansätze [Reading achievements of German pupils in international comparison: results and explanatory approaches]. Zeitschrift für Erziehungswissenschaft, 5, 6-27. doi: 10.1007/s11618-002-0002-1.
 
3.
Baumert, J., & Schümer, G. (2001). Familiäre Lebensverhältnisse, Bildungsbeteiligung und Kompetenzerwerb [Family life situation, educational participation, and competency acquisition]. In J. Baumert, E. Klieme, M. Neubrand, M. Prenzel, U. Schiefele, W. Schneider et al. (Eds.), PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich [PISA 2000: Basic competencies of students in international comparison] (pp. 323-407). Opladen, Germany: Leske + Budrich.
 
4.
Biccard, P., & Wessels, D. C. J. (2011). Documenting the development of modelling competencies of grade 7 mathematics students. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (pp. 375-385). Dordrecht, The Netherlands: Springer. doi: 10.1007/978-94-007-0910-2_37.
 
5.
Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling (pp. 15-30). Dordrecht, The Netherlands: Springer. doi: 10.1007/978-94-007-0910-2_3.
 
6.
Blum, W. (2015). Quality teaching of mathematical modelling: what do we know, what can we do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education—Intellectual and Attitudinal Challenges (pp. 73-96). New York, NY: Springer. doi: 1.1007/978-3-319-12688-3_9.
 
7.
Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugerloaf. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling: Education, Engineering and Economics (pp. 222-231). Chichester, United Kingdom: Horwood. doi: 10.1533/9780857099419.5.221.
 
8.
Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik (ZDM), 38(2), 86–95. doi: 10.1007/BF02655883.
 
9.
Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler [Research methods and evaluation for human and social sciences]. Heidelberg, Germany: Springer.
 
10.
Capraro, R., Capraro, M., & Rupley, W. (2012). Reading-enhanced word problem solving: a theoretical model. European Journal of Psychology of Education, 27(1), 91-114. doi: 10.1007/s10212-011-0068-3.
 
11.
Cromley, J.,& Azevedo, R. (2007). Testing and refining the direct and inferential mediation model of reading comprehension. Journal of Educational Psychology, 99(2), 311-325. doi: 10.1037/0022-0663.99.2.311.
 
12.
De Corte, E., Verschaffel, L., & Op't Eynde, P. (2000). Self-regulation: a characteristic and a goal of mathematics education. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 681-726). San Diego, CA: Academic Press. doi: 10.1016/B978-012109890-2/50050-0.
 
13.
De Corte, E., Verschaffel, L., & Van de Ven, A. (2001). Improving text comprehension strategies in upper primary school children: a desgin experiment. British Journal of Educational Psychology, 71(4), 531-559. doi: 10.1348/000709901158668.
 
14.
Djepaxhija, B., Vos, P., & Fuglestad, B. (2015). Exploring grade 9 students' assumption making when mathematizing. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 848-854). Praque, Czech Republic: ERME.
 
15.
Duke, N. K., & Pearson, P. (2002). Effective practices for developing reading comprehension. In A. E. Farstrup & S. J. Samuels (Eds.), What research has to say about reading instruction (pp. 205-242). Newark, DE: International Reading Association.
 
16.
Edmonds, M. S., Vaughn, S., Wexler, J., Reutebuch, C., Cable, A., Klinger Tackett, K., & Wick Schnakenberg, J. (2009). A synthesis of reading interventions and effects on reading comprehension outcomes for older struggling readers. Review of Educational Research, 79(1), 262-300. doi: 10.3102/0034654308325998.
 
17.
Friedrich, H. F., & Mandl, H. (2006). Lernstrategien: Zur Strukturierung des Forschungsfeldes [Learning strategies: Structure of the research field]. In H. Mandl & H. F. Friedrich (Eds.), Handbuch Lernstrategien [Handbook of Learning Strategies] (pp. 1-23). Göttingen, Germany: Hogrefe.
 
18.
Fuchs, L.S., Fuchs, D., & Prentice, K. (2004). Responsiveness to mathematical problem-solving instruction: comparing students at risks of mathematics disability with and without risk of reading disability. Journal of Learning Disabilities, 37(4), 293-306. doi: 10.1177/00222194040370040201.
 
19.
Galbraith, P., & Stillman, G. (2006). A framework for identifying blockades during transitions in the modelling process. Zentralblatt Für Didaktik Der Mathematik (ZDM), 38(2), 143-162.
 
20.
Gersten, R., Fuchs, L. S., Wiliams, J. P., & Baker, S. (2001). Teaching reading comprehension strategies to students with learning disabilities: a review of research. Review of Educational Research, 71(2), 279-320.
 
21.
Götz, L., Lingel, K., & Schneider, W. (2013). DEMAT 6+. Deutscher Mathematiktest für sechste Klassen [German Mathematics Test for Sixth Graders]. In M. Hasselhorn, H. Marx, & W. Schneider (Eds.), Hogrefe Schultests (Testmappe mit Manual) [Educational tests]. Göttingen, Germany: Hogrefe.
 
22.
Grimm, K. J. (2008). Longitudinal associations between reading and mathematics achievement. Developmental Neuropsychology, 33(3), 410-426. doi: 10.1080/87565640801982486.
 
23.
Grotjahn, R. (2013). C-test. In Michael Byram & Adelheid Hu (Eds.), Routledge encyclopedia of language teaching and learning (pp. 180-181). London, United Kingdom: Routledge.
 
24.
Hasselhorn, M. (2010). Metakognition [Metacognition]. In D. H. Rost (Ed.), Handwörterbuch Pädagogische Psychologie [Concise dictionary of Educational Psychology] (pp. 541-547). Weinheim, Germany: Beltz.
 
25.
Hattie, J., Biggs, J., & Purdie, N. (1996). Effects of learning skills interventions on student learning: a meta-analysis. Review of Educational Research, 66(2), 99-136. doi: 10.3102/00346543066002099.
 
26.
Heinze, A., Rudolph-Albert, F., Reiss, K., Herwartz-Emden, L., & Braun, C. (2009). The development of mathematical competencies of migrant children in german primary schools. In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for Psychology of Mathematics Education (pp. 145-152). Thessaloniki, Greece: PME.
 
27.
Hiebert, E. H., & Raphael, T. E. (1996). Psychological perspectives on literacy and extensions to educational practice. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 550-602). New York, NY: Macmillan.
 
28.
Hofe, R. vom, Pekrun, R., Kleine, M., & Götz, T. (2002). Projekt zur Analyse der Leistungsentwicklung in Mathematik (PALMA). Konstruktion des Regensburger Mathematikleistungstests für 5.-10. Klassen [Project for the Analysis of Learning and Achievement in Mathematics (PALMA): construction of the Regensburg Mathematics Achievement Test for Grades 5 to 10]. Zeitschrift für Pädagogik, 45, 83-100.
 
29.
Jacobs, A.E., & Harskamp, E. G. (2011). A meta-analysis of the effects of instructional interventions on students' mathematics achievement. Groningen, The Netherlands: GION, Gronings Instituut voor Onderzoek van Onderwijs, Opvoeding en Ontwikkeling, Rijksuniversiteit Groningen.
 
30.
Kaiser, G., & Schwarz, I. (2003). Mathematische Literalität unter einer sprachlich-kulturellen Perspektive [Mathematical literacy within the context of linguistic and cultural diversity]. Zeitschrift für Erziehungswissenschaft, 6(3), 357-377. doi: 10.1007/s11618-003-0040-3.
 
31.
Kintsch, W. (1994). Text comprehension, memory, and learning. American Psychologist, 49(4), 294-303. doi: 10.1037/0003-066X.49.4.294.
 
32.
Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109-129. doi: 10.1037/0033-295X.92.1.109.
 
33.
Kirsch, I., De Jong, I., Lafontaine, D., McQueen, J., Mendelovits, J., & Monseur, C. (2003). Reading for change: performance and engagement across countries: results of PISA 2000. Paris, France: OECD.
 
34.
Kultusministerkonferenz. (2003). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss. München, Germany: Luchterhand.
 
35.
Kükçüko lu, H. (2013). Improving reading skills through effective reading strategies. Social and Behavioral Sciences, 70, 709-714. doi: 10.1016/j.sbspro.2013.01.113.
 
36.
Leiss, D. (2007). Hilf mir es selbst zu tun. Lehrerinterventionen beim mathematischen Modellieren [Help me to do it myself. Teacher interventions in mathematical modelling]. Hildesheim, Germany: Franzbecker.
 
37.
Leiss, D., Schukajow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modelling—task analyses, students competencies, and teacher interventions. Journal für Mathematikdidaktik, 31(1), 119-141. doi: 10.1007/s13138-010-0006-y.
 
38.
Leiss, D., Domenech, M., Ehmke, T., & Schwippert, K. (submitted). Schwer—schwierig—diffizil: Zum Einfluss sprachlicher Komplexität von Aufgaben auf fachliche Leistungen in der Sekundarstufe I [The impact of linguistic complexity of tasks on students’ achievements in secondary school]. Journal for Educational Research Online.
 
39.
Lenhard, W. (2013). Leseverständnis und Lesekompetenz: Grundlagen - Diagnostik - Förderung [Reading comprehension and reading skills: basics - diagnostics - promotion]. Stuttgart, Germany: Kohlhammer.
 
40.
Leutner, D., Leopold, C., & Elzen-Rump, Vd. (2007). Self-regulated learning with a text-highlighting strategy. Zeitschrift für Psychologie, 215(3), 174-182. doi: 10.1027/0044-3409.215.3.174.
 
41.
Lipowsky, F., Richter, T., Borromeo Ferri, R., Ebersbach, M., & Hänze, M. (2015). Wünschenswerte Erschwernisse beim Lernen [Desirable learning difficulties]. Schulpädagogik Heute, 11, 1-10.
 
42.
Ludwig, M., & Reit, X.-R. (2013). A cross-sectional study about modelling competency in secondary school. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching Mathematical Modelling: Connecting to Research and Practice (pp. 327-339). Dordrecht, The Netherlands: Springer. doi: 10.1007/978-94-007-6540-5_27.
 
43.
Maaß, K. (2007). Modelling tasks for low achieving students - first results of an empirical study. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of CERME 5 (pp. 2120-2138).
 
44.
Mokhtari, K., & Reichard, C. (2002). Assessing students' metacognitive awareness of reading strategies. Journal of Educational Psychology, 94, 249-259. doi: 10.1037//00220663.94.2.249.
 
45.
Morgan, C. (2013). Language and mathematics: a field without boundaries. In B. Ubuz, C. Haser, & A. Mariotti (Eds.), Proceedings of CERME 8 (pp. 50-67). Ankara, Turkey: METU.
 
46.
National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics: an Overview. Reston, VA: NCTM.
 
47.
Naumann, J., Artelt, C., Schneider, W., & Stanat, P. (2010). Lesekompetenz von PISA 2000 bis PISA 2009 [Reading competence from PISA 2000 to PISA 2009]. In E. Klieme, C. Artelt, J. Hartig, N. Jude, O. Köller, M. Prenzel et al. (Eds.), PISA 2009. Bilanz nach einem Jahrzehnt [PISA 2009. Balance after a decade] (pp. 23-72). Münster, Germany: Waxmann.
 
48.
Nesbit, J.C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: a meta-analysis. Review of Educational Research, 76(3), 413-448. doi: 10.3102/00346543076003413.
 
49.
Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education: The 14th ICMI Study (pp. 3-32). New York, NY: Springer.
 
50.
Nordin, N. M, Rashid, S. Md., Zubir, S., & Sadjirin, R. (2013). Differences in reading strategies: how esl learners really read. Social and Behavorial Sciences (90), 468-477. doi: 10.1016/j.sbspro.2013.07.116.
 
51.
Novak, J.D., & Cañas, A.J. (2007). Theoretical origins of concept maps: how to construct them and uses in education. Reflecting Education, 3(1), 29-42.
 
52.
OECD. 2013. PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. Paris, France: OECD. doi: 10.1787/9789264190511-en.
 
53.
Paris, S. G., Lipson, M., & Wixson, K. (1983). Becoming a strategic reader. Contemporary Educational Psychology, 8(1), 293-316. doi: 10.1016/0361-476X(83)90018-8.
 
54.
Paris, S. G., & Oka, E. R. (1986). Children's reading strategies, metacognition and motivation. Developmental Review, 6, 25-56. doi: 10.1016/0273-2297(86)90002-X.
 
55.
Pollak, H. O. (2007). Mathematical modelling: a conversation with Henry Pollak. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and Applications in Mathematics Education. The 14th ICMI Study (pp. 109-121). New York, NY: Springer. doi: 10.1007/978-0-387-29822-1_9.
 
56.
Prediger, S., Renk, N., Büchter, A., Gürsoy, E., & Benholz, C. (2013). Family background or language disadvantages? Factors for underachievement in high stakes tests. In A. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education Volume 4 (pp. 4.49-4.56). Kiel: PME.
 
57.
Prediger, S., & Krägeloh, N. (2015). Low achieving eighth graders learn to crack word problems: a design research project for aligning a strategic scaffolding tool to students' mental processes. ZDM Mathematics Education, 47, 947–962. doi: 10.1007/s11858-015-0702-7.
 
58.
Prediger, S., Wilhelm, N., Büchter, A., Gürsoy, E., & Benholz, C. (2015). Sprachkompetenz und Mathematikleistung - Empirische Untersuchung sprachlich bedingter Hürden in den Zentralen Prüfungen 10 [Language proficiency and mathematics achievement: empirical investigation of obstacles in high stakes test, the central exam ZP10]. Journal für Mathematikdidaktik, 36, 77-104. doi: 10.1007/s13138-015-0074-0.
 
59.
Pressley, M. (1998). Reading instruction that works. The case for balances teaching. New York, NY: Guilford.
 
60.
Reusser, K. (1994). Tutoring mathematical text problems: from cognitive task analysis to didactic tools. In S. Vosniadou, E. de Corte, & H. Mandl (Eds.), Technology-Based Learning Environments Volume 137 (pp. 174-182). Berlin, Germany: Springer. doi: 10.1007/978-3-642-79149-9_23.
 
61.
Roediger, H. L., III, & Karpicke, J. D. (2006). Test-enhanced learning: taking memory test improves long-term retention. Psychological Science, 17(3), 249-255. doi: 10.1111/j.1467-9280.2006.01693.x.
 
62.
Schaap, S., Vos, P., & Goedhart, M. (2011). Students overcoming bloackages while building a mathematical model: exploring a framework. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 137-146). New York, NY: Springer. doi: 10.1007/978-94-007-0910-2_15.
 
63.
Schneider, W., Schlagmüller, M., & Ennemoser, M. (2007). LGVT 6-12: Manual. Göttingen, The Netherlands: Hogrefe.
 
64.
Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. ZDM Mathematics Education, 47(7), 1241-1254. doi: 10.1007/s11858-015-0707-2.
 
65.
Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students' performance. Educational Studies in Mathematics, 89(3), 393-417. doi: 10.1007/s10649-015-9608-0.
 
66.
Stillman, G. A. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 165-180). Dordrecht, The Nethderlands: Springer.
 
67.
Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections: metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36(2), 157-194. doi: 10.1007/978-94-007-0910-2_18.
 
68.
Thürmann, E., Vollmer, H., & Pieper, I. (2010). Language(s) of schooling: focusing on vulnerable learners. The linguistic and educational integration of children and adolescents from migrant backgrounds. Studies and resources no. 2. Straßbourg: Council of Europe. http://www.coe.int/t/dg4/lingu.... Accessed: 31. Oct. 2016.
 
69.
Van Dooren, W., De Bock, D., & Verschaffel, L. (2013). How students connect descriptions of real-world situations to mathematical models in different reprentational modes. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching Mathematical Modelling: Connecting to Research and Practice (pp. 385-395). Dordrecht, The Netherlands: Springer. doi: 10.1007/978-94-007-6540-5_32.
 
70.
Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, The Netherlands: Swets & Zeitlinger.
 
71.
Voyer, D. (2010). Performance in mathematical problem solving as a function of comprehension and arithmetic skills. International Journal of Science and Mathematics Education, 9(5), 1073-1092. doi: 10.1007/s10763-010-9239-y.
 
72.
Zöttl, L., Ufer, S., & Reiss, K. (2010). Modelling with heuristic worked examples in the KOMMA learning environment. Journal für Mathematikdidaktik, 31(1), 143-165. doi: 10.1007/s13138-010-0008-9.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top