Exploring pre-service primary teachers’ emotions in a geometry project with 3D design
More details
Hide details
University of Santiago de Compostela, Santiago de Compostela, SPAIN
Online publication date: 2024-05-07
Publication date: 2024-06-01
EURASIA J. Math., Sci Tech. Ed 2024;20(6):em2451
This study explores the emotions that pre-service teachers (PSTs) experience when they interact with geometric knowledge and 3D design in a project focused on the way of Saint James pilgrimage route. The sample was made up of 101 PSTs from the University of Santiago de Compostela, the final point of the pilgrimage path. An emotional questionnaire, together with a participant observation notebook and a rubric, served as data collection instruments. The analytical frameworks included the didactical suitability criteria for mediational and affective facets, and SAMR (substitution, augmentation, modification, and redefinition) model for the effective integration of technology in schools. The results show a greater presence of pleasant emotions, highlighting the emotions of curiosity and cheerfulness. Despite this, less pleasant emotions such as brain-taster or bewilderment were notable. Pleasant emotions shown, as well, higher correlation rates. In conclusion, 3D design seems to indicate great potential for working on emotions with this group of students.
Askham, P. (2001). The feeling’s mutual: Excitement, dread and trust in adult learning and teaching [Doctoral thesis, Sheffield Hallam University].
Bailey, J. (2014). Mathematical investigations for supporting pre-service primary teachers. Repeating mathematics education course. Australian Journal of Teacher Education, 39(2), 86-100.
Beltrán-Pellicer, P., & Godino, J. D. (2020). An onto-semiotic approach to the analysis of the affective domain in mathematics education. Cambridge Journal of Education, 50(1), 1-20.
Beltrán-Pellicer, P., & Muñoz-Escolano, J. M. (2021). Una experiencia formativa con BlocksCAD con futuros docentes de matemáticas en secundaria [A training experience with BlocksCAD with future secondary school mathematics teachers]. Didacticae: Revista de Investigación en Didácticas Específicas [Journal of Research in Specific Didactics], 10, 71-90.
Bieleke, M., Goetz, T., Yanagida, T., Botes, E., Frenzel, A. C., & Pekrun, R. (2023). Measuring emotions in mathematics: The achievement emotions questionnaire–Mathematics (AEQ-M). ZDM Mathematics Education, 55(2), 269-284.
Blanco, T. F., & Fernández-López, A. (2023). Didactical suitability of a proposal for 3D printing and augmented reality with pre-service teachers. In C. Csabodi, Ö. Vancso, K. Gosztoniy, & H. Palmér (Eds.), Thirteenth Congress of the European Society for Research in Mathematics Education. CERME.
Blanco, T. F., Fernández-López, A., Martínez-Albella, J., & Rodríguez-Raposo, A. (2022a). Explorando las emociones de futuros docentes frente al uso de tecnologías emergentes en el aprendizaje de la geometría [Exploring the emotions of future teachers regarding the use of emerging technologies in learning geometry]. In T. F. Blanco, C. Núñez-García, M. C. Cañadas & J. A. González-Calero (Eds.), Investigación en Educación Matemática XXV (pp. 595). SEIEM.
Blanco, T. F., Gorgal-Romarís, A., Núñez-García, C., & Sequeiros, P. G. (2022b). Prospective primary teachers’ didactic-mathematical knowledge in a service-learning project for inclusion. Mathematics, 10(4), 652.
Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research–A systematic review of recent trends. Computers & Education, 114, 255-273.
Bursal, M., & Paznokas, L. (2006). Mathematics anxiety and preservice elementary teachers’ confidence to teach mathematics and science. School Science and Mathematics, 106(4), 173-180.
Caballero Carrasco, A., Nieto, L., & Barona, E. (2008). Descripción del dominio afectivo en las matemáticas de los estudiantes para maestros de la Universidad de Extremadura [Description of the affective domain in mathematics of students for teachers of the University of Extremadura]. Paradigma, 29(2), 157-172.
Casas, J. C., León-­Mantero, C., Maz-­Machado, A., Jiménez-­Fanjul, N., & Madrid M. J. (2016). Identificando las relaciones de la escala de actitud hacia las matemáticas propuesta por Auzmendi en maestros en formación [Identifying the relationships of the attitude scale towards mathematics proposed by Auzmendi in teachers in training]. In J. A. Macías, A. Jiménez, J. L. González, M. T. Sánchez, P. Hernández, C. Fernández, F. J. Ruiz, T. Fernández, & A. Berciano (Eds.), Investigación en educación matemática XX [Research in mathematics education XX] (p. 579). SEIEM.
Cheng, L., Antonenko, P. D., Ritzhaupt, A. D., Dawson, K., Miller, D., MacFadden, B. J., Grant, C., Sheppard, T. D., & Ziegler, M. (2020). Exploring the influence of teachers’ beliefs and 3D printing integrated STEM instruction on students’ STEM motivation. Computers & Education, 158, 103983.
Cheng, L., Antonenko, P. P., Ritzhaupt, A. D., & MacFadden, B. (2021). Exploring the role of 3D printing and STEM integration levels in students’ STEM career interest. British Journal of Educational Technology, 52(3), 1262-1278.
Chien, Y.-H., & Chu, P.-Y. (2018). The different learning outcomes of high school and college students on a 3D-printing STEAM engineering design curriculum. International Journal of Science and Mathematics Education, 16(6), 1047-1064.
Cobb, P., Jackson, K., & Dunlap, C. (2017). Conducting design studies to investigate and support mathematics students’ and teachers’ learning. In J. Cai (Ed.), Compendium for research in mathematics education (pp.208-233). NCTM.
DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics, 63(2), 131-147.
Di Martino, P., & Zan, R. (2011). Attitude towards mathematics: A bridge between beliefs and emotions. ZDM–International Journal on Mathematics Education, 43(4), 471-482.
Dickson, B., Weber, J., Kotsopoulos, D., Boyd, T., Jiwani, S., & Roach, B. (2021). The role of productive failure in 3D printing in a middle school setting. International Journal of Technology and Design Education, 31(3), 489-502.
Diego-Mantecón, J. M., Blanco, T. F., Chamoso, J. M., & Cáceres, M. J. (2019). An attempt to identify the issues underlying the lack of consistent conceptualisations in the field of student mathematics-related beliefs. PLoS ONE, 14(11), e0224696.
Diego-Mantecón, J. M., Blanco, T. F., Ortiz-Laso, Z., & Lavicza, Z. (2021). Proyectos STEAM con formato KIKS para el desarrollo de competencias clave [STEAM projects with KIKS format for the development of key skills]. Comunicar, 66, 33-43.
Fernández-Blanco, T., González-Roel, V., & Ares, A. Á. (2020). Estudio exploratorio de las steam desde las matemáticas [Exploratory study of STEAM from mathematics]. Saber & Educar, (28).
Fernández-López, A., & Blanco, T. F. (2023). SAMR model for 3D printing and augmented reality. In C. Kynigos, M. Latsi, M. Grizioti, D. Diamantidis, M. Karavakou, M. Xenos, C. Gkreka, K. Schiza, & M. S. Nikolaou (Eds.), Proceedings of the 16th International Conference on Technology in Mathematics Teaching. ICTMT.
Ford, S., & Minshall, T. (2019). Invited review article: Where and how 3D printing is used in teaching and education. Additive Manufacturing, 25, 131-150.
Forehand, M. (2005). Bloom’s taxonomy: Original and revised. In M. Orey (Ed.), Emerging perspectives on learning, teaching, and technology (pp. 41-44). The Global Text Project.
Fortuny, J. M., Iranzo, N., & Morera, L. (2010). Geometría y tecnología [Geometry and technology]. In M. M. Moreno, A. Estrada, J. Carrillo, & T. A. Sierra (Eds.), Investigación en educación matemática XIV [Research in mathematics education XIV] (pp. 69-85). SEIEM.
García-Utrera. L., Figueroa-Rodríguez, S., & Esquivel-Gámez, I. (2014). Modelo de sustitución, aumento, modificación, y redefinición (SAMR): Fundamentos y aplicaciones [Substitution, augmentation, modification, and redefinition (SAMR) model: Fundamentals and applications]. In I. Esquivel-Gámez (Ed.), Los Modelos Tecno-Educativos: Revolucionando el aprendizaje del siglo XXI [Techno-educational models: Revolutionizing 21st century learning] (pp. 205-220). DSAE Universidad Veracruzana.
Gil, N., Blanco, L., & Guerrero, E. E. (2005). El papel de la afectividad en la resolución de problemas matemáticos [The role of affectivity in solving mathematical problems]. Revista de Educación [Education Magazine], 340, 551-569.
Godino, J. D., Batanero, C., & Burgos, M. (2023). Theory of didactical suitability: An enlarged view of the quality of mathematics instruction. EURASIA Journal of Mathematics, Science and Technology Education, 19(6), em2270.
Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM Mathematics Education, 39, 127-135.
Gómez, R., & Caballero, A. (2015). La ansiedad de los estudiantes para maestro ante la enseñanza de las matemáticas [The anxiety of student teachers when teaching mathematics]. In L. J. B. Nieto, J. A. C. Lizarazo, & A. C. Carrasco (Eds.), La resolución de problemas de matemáticos en la formación inicial de profesores de primaria [The resolution of mathematics problems in the initial training of primary teachers] (pp. 59-80). Manuales UEX.
Gómez-Chacón, I. M. (2000). Matemática emocional. Los afectos en el aprendizaje matemático [Emotional mathematics. Affects in mathematical learning]. Narcea.
Gómez-Chacón, I. M., & Marbán Prieto, J. M. (2019). Afecto y conocimiento profesional docente en matemáticas [Teacher professional affection and knowledge in mathematics]. In E. R. Badillo Jiménez, N. Climent Rodríguez, C. Fernández Verdú, & M. T. González Astudillo (Eds.), Investigación sobre el profesor de matemáticas: Práctica de aula, conocimiento, competencia y desarrollo profesional [Research on the mathematics teacher: Classroom practice, knowledge, competence and professional development] (pp. 397-416). Ediciones Universidad de Salamanca.
Gómez-Chacón, I. M., Romero Albaladejo, I., & García López, M. M. (2016). Zig-zagging in geometrical reasoning in technological collaborative environments: A mathematical working space-framed study concerning cognition and affect. ZDM Mathematics Education, 48, 909-924.
Gómez-Chacón, I.M., Bacelo, A., Marbán, J. M., & Palacios, A. (2023). Inquiry-based mathematics education and attitudes towards mathematics: Tracking profiles for teaching. Mathematics Education Research Journal.
Hodgen, J., & Askew, M. (2007). Emotion, identity and teacher learning: Becoming a primary mathematics teacher. Oxford Review of Education, 33(4), 469-487.
Hsu, Y.-S., & Fang, S.-C. (2019). Opportunities and challenges of STEM education. In Y.-S. Hsu, & Y.-F. Yeh (Eds.), Asia-Pacific STEM teaching practices (pp. 1-16). Springer.
Huleihil M. (2017). 3D printing technology as innovative tool for math and geometry teaching applications. IOP Conference Series: Materials Science and Engineering, 164, 012023.
Isiksal, M., Curran, J. M., Koc, Y., & Askun, C. S. (2009). Mathematics anxiety and mathematical self-concept: Considerations in preparing elementary-school teachers. Social Behavior and Personality, 37(5), 631-643.
Jong, C., Hodges, T. E., Royal, K. D., & Welder, R. M. (2015): Instruments to measure elementary preservice teachers’ conceptions. Educational Research Quarterly, 39(1), 21-48.
Kwon, H. (2017). Effects of 3D printing and design software on students’ interests, motivation, mathematical and technical skills. Journal of STEM Education, 18(4), 37-42.
León-Mantero, C., Pedrosa-­Jesús, C., Maz-­Machado, A., & Casas-­Rosal, J. C. (2018). Tratamiento matemático de mediciones de actitudes con escalas tipo Likert [Mathematical treatment of attitude measurements with Likert-type scales]. In L. J. Rodríguez-­Muñiz, L. Muñiz-­Rodriguez, A. Aguilar-­González, P. Alonso, F. J. García García, & A. Bruno (Eds.), Investigación en educación matemática XXII [Research in mathematics education XXII] (pp. 290-299). SEIEM.
Levine, G. (1996). Variability in anxiety for teaching mathematics among pre-service elementary school teachers enrolled in a mathematics course [Paper presentation]. The Annual Meeting of the American Educational Research Association.
Marbán, J. M., Palacios, A., & Maroto, A. (2020). Desarrollo del domino afectivo matemático en la formación inicial de maestros de primaria [Development of the mathematical affective domain in the initial training of primary school teachers]. Avances de Investigación en Educación Matemática [Research Advances in Mathematics Education], 18, 73-86.
Meza, H., & Duarte, E. (2020). La metodología STEAM en el desarrollo de competencias y la resolución de problemas [The STEAM methodology in the development of skills and problem solving]. In Proceedings of the 2nd International Congress of Education.
Ng, D. T. K., Tsui, M. F., & Yuen, M. (2022). Exploring the use of 3D printing in mathematics education: A scoping review. Asian Journal for Mathematics Education, 1(3), 338-358.
Ng, O.-L. (2017). Exploring the use of 3D computer-aided design and 3D printing for STEAM learning in mathematics. Digital Experiences in Mathematics Education, 3(3), 257-263.
Nortes Martínez-Artero, R., & Nortes Checa, A. (2020). Actitud hacia las matemáticas en el grado de maestro de primaria [Attitude towards mathematics in the primary teacher degree]. Revista Electrónica Interuniversitaria de Formación del Profesorado [Interuniversity Electronic Journal of Teacher Training], 23(2), 225-239.
Ortiz-Laso, Z., Diego-Mantecón, J. M., Lavicza, Z., & Blanco, T. F. (2023). Teacher growth in exploiting mathematics competencies through STEAM projects. ZDM Mathematics Education 55, 1283-1297.
Picos, A. P., Alonso, S. H., & Sáez, A. M. (2004). ¿Por qué se rechazan las matemáticas?: Análisis evolutivo y multivariante de actitudes relevantes hacia las matemáticas [Why is mathematics rejected?: Evolutionary and multivariate analysis of relevant attitudes towards mathematics]. Revista de Educación [Education Magazine], 334, 75-98.
Puentedura, R. (2012). SAMR: Guiding development.
Rebollo, M. A., García-Pérez, R., Buzón-García, O., & Vega-Caro, L. (2014). Las emociones en el aprendizaje universitario apoyado en entornos virtuales: Diferencias según actividad de aprendizaje y motivación del alumnado [Emotions in university learning supported in virtual environments: Differences according to learning activity and student motivation]. Revista Complutense de Educación [Complutense Education Magazine], 25(1), 69-93.
Sakiz, G., Pape, S. J., & Hoy, A. W. (2012). Does perceived teacher affective support matter for middle school students in mathematics classrooms? Journal of School Psychology, 50(2), 235-255.
Sánchez Mendías, J., Segovia Alex, I., & Miñán Espigares, A. (2011). Exploración de la ansiedad hacia las matemáticas en los futuros maestros de educación primaria [Exploring anxiety toward mathematics in pre-service teachers of elementary education]. Profesorado. Revista de Currículum y Formación de Profesorado, 15(3), 297-312.
Simpkins, S. D., Davis-Kean P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42(1), 70-83.
Tejera, M., Aguilar, G., & Lavicza, Z. (2022). Modelling and 3D-printing architectural models–A way to develop STEAM projects for mathematics classrooms. In F. Dilling, F. Pielsticker, & I. Witzke (Eds.), Learning mathematics in the context of 3D printing. Springer.
Warfield, J., Wood, T., & Lehman, J. D. (2005). Autonomy, beliefs and the learning of elementary mathematics teachers. Teaching and Teacher Education, 21(4), 439-45.
Journals System - logo
Scroll to top