RESEARCH PAPER
Atwood’s Machine and Electromagnetic Induction: A Real Quantitative Experiment to Analyze Students’ Ways of Reasoning
 
More details
Hide details
1
Secondary School “G.B. Quadri”, Vicenza, ITALY
 
2
Department of Mathematics, Computer Science and Physics, University of Udine, Udine, ITALY
 
3
Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, ITALY
 
 
Publication date: 2022-01-17
 
 
EURASIA J. Math., Sci Tech. Ed 2022;18(2):em2077
 
KEYWORDS
ABSTRACT
We report a research-based proposal on electromagnetic induction within the theoretical framework of the Model of Educational Reconstruction. The proposal is based on a sequence of inquiry-based experimental activities centered on hands-on materials and Real-Time quantitative experiments, through which students explore the phenomenology of electromagnetic induction. The sequence was planned to address Faraday-Neumann-Lenz law analyzing the involved physics quantities and constructing quantitative relationships between them. Our hypothesis was based on the idea that phenomenological explorations performed through online sensors promote a functional understanding of electromagnetic induction and help students to face the conceptual knots highlighted by international literature about these phenomena. The educational sequence was proposed to a sample of 87 high school students with the aim of analyzing the evolution of the educational processes employing a set of inquiry-based tutorials. The qualitative analysis of students’ answers demonstrates that students increased their knowledges in the analysis of electromagnetic induction phenomena recognizing the fundamental role of time-variation of the magnetic field flux in the Faraday-Neumann-Lenz law.
 
REFERENCES (91)
1.
Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Naaman, R. M., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419. https://doi.org/10.1002/sce.10....
 
2.
Albe, V., Venturini, P., & Lascours, J. (2001). Electromagnetic concepts in mathematical representation of physics. Journal of Science Education and Technology, 10(2), 197-203. https://doi.org/10.1023/A:1009....
 
3.
Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? Educational Researcher, 41(1), 16-25. https://doi.org/10.3102/001318....
 
4.
Bagno, E., & Eylon, B. S. (1997). From problem solving to a knowledge structure: An example from the domain of electromagnetism. American Journal of Physics, 65(8), 726-736. https://doi.org/10.1119/1.1864....
 
5.
Belcher, J. W., & Olbert, S. (2003). Field line motion in classical electromagnetism. American Journal of Physics, 71(3), 220-228. https://doi.org/10.1119/1.1531....
 
6.
Bonanno, A., Bozzo, G., Camarca, M., & Sapia, P. (2011). Using a PC and external media to quantitatively investigate electromagnetic induction. Physics Education, 46(4), 385-394. https://doi.org/10.1088/0031-9....
 
7.
Bradamante, F., & Viennot, L. (2007). Mapping gravitational and magnetic fields with children 9-11: Relevance, difficulties and prospects. International Journal of Science Education, 29(3), 349-372. https://doi.org/10.1080/095006....
 
8.
Bradamante, F., Fedele, B., & Michelini, M. (2005). Children’s spontaneous ideas of magnetic and gravitational fields. In R. Pintò, & D. Couso (Eds.), ESERA 2005 - CRESILS International Conference: Selected Papers. Barcelona.
 
9.
Bradley, E.H., Curry, L. A., & Devers K. J. (2007). Qualitative data analysis for health services research: Developing taxonomy, themes, and theory. Health Research and Educational Trust, 42(4), 1758-1772. https://doi.org/10.1111/j.1475....
 
10.
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15-42. https://doi.org/10.1207/s15327....
 
11.
DBRC - Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. https://doi.org/10.3102/001318....
 
12.
Denzin, N., & Lincoln, Y. (2011). Handbook of qualitative research. SAGE Publications. https://doi.org/10.2307/312168....
 
13.
Ding, L., Chabay, R., Sherwood, B., & Beichner, R. (2006). Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical Review Special Topics - Physics Education Research, 2, 010105. https://doi.org/10.1103/PhysRe....
 
14.
Dori, Y. J., & Balchner, J. (2005). How does technology-enabled active learning affect undergraduate students’ understanding of EM concepts? Journal of the Learning Sciences, 14(2), 243-279. https://doi.org/10.1207/s15327....
 
15.
Duit, R., Gropengießer, H., & Kattmann, U. (2005). Towards science education research that is relevant for improving practice: The model of educational reconstruction. In H. E. Fischer (Ed.), Developing standards in research on science education, the ESERA Summer School 2004 (pp. 1-10). Taylor & Francis Group.
 
16.
Duit, R., Jung, W., & von Rhöneck, C. (Eds.). (1985). Aspects of understanding electricity: Proceedings of an international workshop. IPN-Ar-beitsberichte 59. https://books.google.it/books/....
 
17.
Erickson, F. (2012). Qualitative research methods for science education. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second International Handbook of Science Education (2nd ed., pp. 1451-1469). Springer. https://doi.org/10.1007/978-1-....
 
18.
Fan, J. E. (2015). Drawing to learn: How producing graphical representations enhances scientific thinking. Translational Issues in Psychological Science, 1(2), 170-181. https://doi.org/10.1037/tps000....
 
19.
Ferguson-Hessler, M. G. M., & de Jong, T. (1987). On the quality of knowledge in the field of electricity and magnetism. American Journal of Physics, 55(6), 492-497. https://doi.org/10.1119/1.1510....
 
20.
Fodor, P. S., & Peppard, T. (2012). Lenz’s law demonstration using an ultrasound position sensor. The Physics Teacher, 50(6), 344-346. https://doi.org/10.1119/1.4745....
 
21.
Galili, I. (2001). Conceptual problems in teaching electromagnetism within an introductory physics course. In R. Pintó & S. Surinach (Eds.), Physics teacher education beyond 2000 (pp. 213-216). Elsevier. https://doi.org/10.1007/s10763.
 
22.
Galili, I., & Kaplan, D. (1997). Changing approach to teaching electromagnetism in a conceptually oriented introductory physics course. American Journal of Physics, 65(7), 657-667. https://doi.org/https://doi.or....
 
23.
Galili, I., Kaplan, D., & Lehavi, Y. (2006). Teaching Faraday’s law of electromagnetic induction in an introductory physics course. American Journal of Physics, 74(4), 337-343. https://doi.org/10.1119/1.2180....
 
24.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded research: Strategies for qualitative research. Routledge.
 
25.
Greczyło, T., Bouquet, F., Ireson, G., Michelini, M., & Engstrom, V. (2010). High-tech kit - The set of advanced activities from the Mosem Project. Il Nuovo Cimento C, 3, 221-229. https://doi.org/10.1393/ncc/i2....
 
26.
Guisasola, J., Almudì, J. M., & Zubimendi, J. L. (2004). Difficulties in learning the introductory magnetic field theory in the first years of university. Science Education, 88(3), 443-464. https://doi.org/10.1002/sce.10....
 
27.
Guisasola, J., Michelini, M., Mossenta, A., Testa, I., Viola, R., & Testa, A. (2008). Teaching electromagnetism: Issues and changes. In R. Jurdana-Sepic, L. Labinac, M. Žuvi!-Butorac, & A. Sušac (Eds.), Frontiers of Physics Education (pp. 58-76). Zlatni.
 
28.
Härtel, H., & IPN Group. (1986). Circuits, electric current and the electromagnetic induction. IPN.
 
29.
Heron, P., Shaffer, P., & McDermott, L. (2004). Research as a guide to improving student learning: An example from introductory physics. In AAAS (Eds.), Invention and Impact: Building Excellence in Undergraduate Science, Technology, Engineering and Mathematics (STEM) Education (pp. 33-38). AAAS. http://www.aaas.org/sites/defa....
 
30.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54. https://doi.org/10.1002/sce.10....
 
31.
Hong, J. C., Hsiao, H. S., Chen, P. H., Lu, C. C., Tai, K. H., Tsai, C. R. (2021) Critical attitude and ability associated with students’ self-confidence and attitude toward “predict-observe-explain” online science inquiry learning, Computers & Education, 166, 104172. https://doi.org/10.1016/j.comp....
 
32.
Hsiao, H.-S., Chen, J., Hong, J.-C., Chen, P.-H., Lu, C.-C., & Chen, S. Y. (2017). A five-stage prediction-observation-explanation inquiry-based learning model to improve students’ learning performance in science courses. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3393-3416. https://doi.org/10.12973/euras....
 
33.
Huang, Y., Yang, B. W., Adams, R., Howell, B., Zhang, J. Z., & Burbank, K. (2008). Teaching electromagnetic fields with computer visualization. In Proceedings of the 2008 IAJC-IJME Intl. Conference. http://www.ijme.us/cd_08/PDF/2....
 
34.
Ivanov, D. T. (2000). Another way to demonstrate Lenz’s law. The Physics Teacher, 38, 48-49. https://doi.org/10.1119/1.8804....
 
35.
Jelicic, K., Planinic, M., & Planinsic, G. (2017). Analyzing high school students’ reasoning about electromagnetic induction. Physical Review Physics Education Research, 13, 010112. https://doi.org/10.1103/PhysRe....
 
36.
Jodl, H. J., & Eckert, B. (1998). Low-cost, high-tech experiments for educational physics. Physics Education, 33(4), 226-235. https://doi.org/10.1088/0031-9....
 
37.
Jones, C. (2003). Understanding and using the minus sign in Faraday’s law. Physics Education, 38(6), 526-530. https://doi.org/10.1088/0031-9....
 
38.
Kedzierska, E., Fastard, V., Esquembre, F., Konicek, L., Peeters, W., & Stefanel, A. (2010). MOSEM2 project: Integration of data acquisition, modelling, simulation and animation for learning electromagnetism and superconductivity. Il Nuovo Cimento C, 3), 65-74. https://doi.org/10.1393/ncc/i2....
 
39.
Kesonen, M. H. P., Asikainen, M. A., & Hirvonen, P. E. (2011). University students’ conceptions of the electric and magnetic fields and their interrelationships. European Journal of Physics, 32, 521-534. https://doi.org/10.1088/0143-0....
 
40.
Kingman, R., Rowland, S. C., & Popescu, S. (2002). An experimental observation of Faraday’s law of induction. American Journal of Physics, 70(6), 595-598. https://doi.org/10.1119/1.1405....
 
41.
Layton, B., & Simon, M. (1998). A different twist on the Lorentz force and Faraday’s law. The Physics Teacher, 36, 474-479. https://doi.org/10.1119/1.8799....
 
42.
Loftus, M. (1996). Students’ ideas about electromagnetism. School Science Review, 77(280), 93-94.
 
43.
MacLatchy, C. S., Backman, P., & Bogan, L. (1993). A quantitative magnetic braking experiment. American Journal of Physics, 61(12), 1096-1101. https://doi.org/10.1119/1.1735....
 
44.
Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J., & Van Heuvelen, A. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(7), S12-S23. https://doi.org/10.1119/1.1371....
 
45.
Mauk, H. V., & Hingley, D. (2005). Student understanding of induced current: Using tutorials in introductory physics to teach electricity and magnetism. American Journal of Physics, 73(12), 1164-1171. https://doi.org/10.1119/1.2117....
 
46.
McDermott, L. C. (1991). Millikan Lecture 1990: What we teach and what is learned—Closing the gap. American Journal of Physics, 59(4), 301-315. https://doi.org/10.1119/1.1653....
 
47.
McDermott, L. C., & Shaffer, P. S. (1998). Tutorials in introductory physics. Prentice Hall, Inc.
 
48.
McNeil, J. A. (2004). The metal detector and Faraday’s law. The Physics Teacher, 42, 8-12. https://doi.org/10.1119/1.1790....
 
49.
Méheut, M., & Psillos, D. (2004). Teaching–learning sequences: Aims and tools for science education research. International Journal of Science Education, 26(5), 515-535. https://doi.org/10.1080/095006....
 
50.
Michelini, M. (2006). The learning challenge: A bridge between everyday experience and scientific knowledge. In G. Planinsic & A. Mohoric (Eds.), Informal learning and public understanding of physics (pp. 18-39). University of Lubiana.
 
51.
Michelini, M. (2010). Building bridges between common sense ideas and a physics description of phenomena to develop formal thinking. In L. Menabue & G. Santoro (Eds.), New trends in science and technology education - Selected papers (pp. 257-274). CLUEB.
 
52.
Michelini, M. (2018). Labs in building a modern physics way of thinking. In D. Sokodowska & M. Michelini (Eds.), The role of laboratory work in improving physics teaching and learning (pp. 15-34). Springer. https://doi.org/10.1007/978-3-....
 
53.
Michelini, M., & Vercellati, S. (2012). Pupils explore magnetic and electromagnetic phenomena in CLOE labs. Latin-American Journal of Physics Education, 6(1), 10-15. http://www.lajpe.org/icpe2011/....
 
54.
Michelini, M., & Vercellati, S. (2014a). Exploring the sources of magnetic field and the interactions between them to interpret electromagnetic induction: A proposal of conceptual laboratory. In W. Kaminski & M. Michelini (Eds.), Teaching and learning physics today: Challenges? Benefits? In International Conference GIREP-ICPE-MPTL 2010 Proceedings (pp. 228-234). Lithostampa.
 
55.
Michelini, M., & Vercellati, S. (2014b). Magnetic field flux in understanding electromagnetism. In D. Szarková, D. Richtáriková, & V. Záhonová (Eds.), 12th International Conference APLIMAT 2013 (pp. 447-455). Curran Associates.
 
56.
Michelini, M., & Viola, R. (2008). A proposal for a curricular path about electromagnetic induction. In C. P. Constantinou & N. Papadouris (Eds.), Physics curriculum design, development and validation - GIREP 2008 international conference: Selected papers book. Learning in Science Group, Department of Educational Sciences.
 
57.
Michelini, M., & Viola, R. (2009). Electromagnetic induction: A proposal for a teaching/learning path. In A. Bilsel & M. Garip (Eds.), Frontiers in science education research (pp. 325-333). Eastern Mediterranean University Press.
 
58.
Michelini, M., & Viola, R. (2010). A research based teaching/learning path experimented in secondary school on electromagnetic induction. In L. Menabue & G. Santoro (Eds.), New trends in science and technology education - Selected papers (pp. 364-371). CLUEB.
 
59.
Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative data analysis (3th ed.). Sage Publications, Inc. https://doi.org/10.1080/014052....
 
60.
Munley, F. (2004). Challenges to Faraday’s flux rule. American Journal of Physics, 72(12), 1478-1483. https://doi.org/10.1119/1.1789....
 
61.
Niedderer, H. (1989). Qualitative and quantitative methods of investigating alternative frameworks of students - With Results from Atomic Physics and other Subject Areas. In AAPT meeting. San Francisco.
 
62.
Ochoa, O. R., Kolp, F., & Handler, J. T. (1998). Quantitative demonstration of Lenz’s law. The Physics Teacher, 36, 50-52. https://doi.org/10.1119/1.8799....
 
63.
Peters, P. C. (1984). The role of induced emf’s in simple circuits. American Journal of Physics, 52(3), 208-221. https://doi.org/10.1119/1.1369....
 
64.
Pospiech, G., Geyer, M. A., Ceuppens, S., De Cock, M., Deprez, J., Dehaene, W., & Stefanel, A. (2019). Role of graphs in the mathematization process in physics education. Journal of Physics: Conference Series, 1287, 012014. https://doi.org/10.1088/1742-6....
 
65.
Ramnarain, U., & Hlatswayo, M. (2018). Teacher beliefs and attitudes about inquiry-based learning in a rural school district in South Africa. South African Journal of Education, 38(1) 1431. https://doi.org/10.15700/saje.....
 
66.
Roy, M. K., Harbola, M. K., & Verma, H. C. (2007). Demonstration of Lenz’s law: Analysis of a magnet falling through a conducting tube. American Journal of Physics, 75(8), 728-730. https://doi.org/10.1119/1.2744....
 
67.
Saarelainen, M., Laaksonen, A., & Hirvonen, P. E. (2007). Students’ initial knowledge of electric and magnetic fields-more profound explanations and reasoning models for undesired conceptions. European Journal of Physics, 28, 51-60. https://doi.org/10.1088/0143-0....
 
68.
Saglam, M., & Millar, R. (2005). Diagnostic Test of Students’ Ideas in Electromagnetism (DTSIE). Department of Educational Studies Research Paper, 2005/09, University of York.
 
69.
Sanchez, C. W., & Loverude, M. E. (2012). Further investigation of examining students understanding of Lenz’s law and Faraday’s law. AIP Conference Proceedings, 1413, 335-338. https://doi.org/10.1063/1.3680....
 
70.
Savelsbergh, E. R., De Jong, T., & Ferguson-Hessler, M. G. M. (2002). Situational knowledge in physics: The case of electrodynamics. Journal of Research in Science Teaching, 39(10), 928-951. https://doi.org/10.1002/tea.10....
 
71.
Savelsbergh, E. R., De Jong, T., & Ferguson-Hessler, M. G. M. (2011). Choosing the right solution approach: The crucial role of situational knowledge in electricity and magnetism. Physical Review Special Topics - Physics Education Research, 7(1), 010103. https://doi.org/10.1103/PhysRe....
 
72.
Sawicki, C. A. (2000). A Lenz’s law experiment revisited. The Physics Teacher, 38, 439-441. https://doi.org/10.1119/1.1324....
 
73.
Scaife, T. M., & Heckler, A. F. (2007). The effect of field representation on student responses to magnetic force questions. In L. Hsu, C. R. Henderson, & L. McCullough (Eds.), Physics Education Research Conference (pp. 180-183). AIP Conference Proceedings. https://doi.org/10.1063/1.2820....
 
74.
Scanlon, P. J., Henriksen, R. N., & Allen, J. R. (1969). Approaches to electromagnetic induction. American Journal of Physics, 37(7), 698-708. https://doi.org/10.1119/1.1975....
 
75.
Secrest, S., & Novodvorsky, I. (2005). Identifying student difficulties with understanding induced EMF. ArXiv:Physics/0501093v1.
 
76.
Sokoloff, D. R., & Laws, P. W. (2011). RealTime physics - Active learning laboratories - Module 3: Electricity & Magnetism (3rd ed.). Wiley & Sons Inc.
 
77.
Sokoloff, D. R., Laws, P. W., & Thornton, R. K. (2007). RealTime Physics: Active learning labs transforming the introductory laboratory. European Journal of Physics, 28, S83-S94. https://doi.org/10.1088/0143-0....
 
78.
Stefanel, A. (2019). Graph in physics education: From representation to conceptual understanding. In G. Pospiech, M. Michelini, & B. S. Eylon (Eds.), Mathematics in Physics Education (pp. 195-231). Springer. https://doi.org/10.1007/978-3-....
 
79.
Testa, I., Monroy, G., & Sassi, E. (2002). Students’ reading images in kinematics: The case of real-time graphs. International Journal of Science Education, 24(3), 235-256. https://doi.org/10.1080/095006....
 
80.
Theodorakakos, A., Hatzikraniotis, E., & Psillos, D. (2010). PEC task explorer: A tool for ICT supported learning in science. In C. Costantinou (Ed.), International Conference on Computer-based Learning in Science (CBLIS 2010) - Book of Proceedings (pp. 75-83). OEIiZK.
 
81.
Thong, W. M., & Gunstone, R. (2008). Some student conceptions of electromagnetic induction. Research in Science Education, 38(1), 31-44. https://doi.org/10.1007/s11165....
 
82.
Törnkvist, S., Petterson, K. A., & Tranströmer, G. (1993). Confusion by representation: On student’s comprehension of the electric field concept. American Journal of Physics, 61(4), 335. https://doi.org/10.1119/1.1726....
 
83.
Torzo, G., Sconza, A., & Storti, R. (1987). A low-cost digital teslameter. Journal of Physics E: Scientific Instruments, 20, 260-262. https://doi.org/10.1088/0022-3....
 
84.
Trumper, R., & Gelbman, M. (2000). Investigating electromagnetic induction through a microcomputer-based laboratory. Physics Education, 35(2), 90-95. https://doi.org/10.1088/0031-9....
 
85.
Van Heuvelen, A., Allen, L., & Mihas, P. (1999). Experiment problems for electricity and magnetism. The Physics Teacher, 37, 482-485. https://doi.org/10.1119/1.8803....
 
86.
White, R., & Gunstone, R. (1992). Prediction - Observation - Explanation. In R. White & R. Gunstone (Eds.), Probing understanding (1st ed., pp. 44-64). Routledge. https://doi.org/10.1017/CBO978....
 
87.
Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20....
 
88.
Woolnough, J. (2000). How do students learn to apply their mathematical knowledge to interpret graphs in physics? Research in Science Education, 30(3), 259-267. https://doi.org/10.1007/BF0246....
 
89.
Zuza, K., & Guisasola, J. (2013). Closing the gap between experimental data and concepts of electromagnetic induction. In C. P. Constantinou, N. Papadouris, A. Hadjigeorgiou, D. Psillos, & N. Papadouris (Eds.), Science education research for evidence-based teaching and coherence in learning. European Science Education Research Association.
 
90.
Zuza, K., Almudí, J. M., Leniz, A., & Guisasola, J. (2014). Addressing students’ difficulties with Faraday’s law: A guided problem solving approach. Physical Review Special Topics - Physics Education Research, 10, 010122. https://doi.org/10.1103/PhysRe....
 
91.
Zuza, K., Guisasola, J., Michelini, M., & Santi, L. (2012). Rethinking Faraday’s law for teaching motional electromotive force. European Journal of Physics, 33, 397-406. https://doi.org/10.1088/0143-0....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top