Semiosis of conceptual learning of mathematical inequalities through semiotic meaning triads
More details
Hide details
Universidad de San Buenaventura, Medellín, COLOMBIA
Online publication date: 2023-11-11
Publication date: 2023-12-01
EURASIA J. Math., Sci Tech. Ed 2023;19(12):em2375
The process of semiosis for the conceptual learning of inequalities allows the student to revitalize the interpretation, understanding, and solution of problems both in mathematical contexts and in everyday contexts. This research designed and applied a didactic strategy based on the semiotic theory of semiotic treatments and conversions to develop the semiosis processes of conceptual learning of inequalities through the methodology of the semiotic meaning triad and its three phases applied in class sessions focused on the solution of inequalities, defining the domain and range of functions and interpreting the lipid profile of a person.
Almog, N., & Ilany, B. S. (2012). Absolute value inequalities: High school students’ solutions and misconceptions. Educational Studies in Mathematics, 81(3), 347-364.
Balomenou, A., Komis, V., & Zacharos, K. (2017). Handling signs in inequalities by exploiting multiple dynamic representations–The case of ALNuSet. Digital Experiences in Mathematics Education, 3(1), 39-69.
Blanco, L. J., & Garrote, M. (2007). Difficulties in learning inequalities in students of the first year of pre-university education in Spain. EURASIA Journal of Mathematics, Science and Technology Education, 3(3), 221-229.
Brousseau, G. (2007). Iniciacion al studio de la Teoria de las situaciones didacticas Guy Brousseau [Introduction to the study of the theory of didactic situations Guy Brousseau]. Libros Del Zorzal.
D’Amore, B. (2003). The noetic in mathematics. Scientia Pedagogica Experimentalis [Experimental Pedagogical Science], 39, 75-82.
D’Amore, B. (2004). Conceptualización, registros de representaciones semióticas y noética [Conceptualization, records of semiotic and noetic representations]. Revista de Didáctica de Las Matemáticas [Journal of Mathematics Didactics], 35, 90-106.
D’Amore, B. (2006). Objetos, significados, representaciones semioticas y sentido [Objects, meanings, semiotic representations and sense]. Relime, 2006, 177-195.
D’Amore, B., Fandiño, M., Marazzani, I., & Sbaragli, S. (2010). La didáctica y la dificultad en matemática [Didactics and difficulty in mathematics]. Editorial Magisterio.
Durán Salas, F. (2022). Tres representaciones semióticas que dan significado al aprendizaje del concepto de número: Propuesta de una estrategia didáctica para preescolares [Three semiotic representations that give meaning to learning the concept of number: Proposal of a didactic strategy for preschoolers]. Revista Boletín Redipe [Redipe Bulletin Magazine], 11(3), 231-257.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103-131.
Duval, R. (2017a). Semiosis y pensamiento humano [Semiosis and human thought]. Editorial Universidad del Valle.
Duval, R. (2017b). Understanding the mathematical way of thinking–The registers of semiotic representations. Springer.
Fandiño, M. (2010). Multiples aspectos del aprendizaje de la matemática: Evaluar e intervenir en forma mirada y especifica [Multiple aspects of learning mathematics: Evaluate and intervene in a comprehensive and specific way]. Editorial Magisterio.
Godino, J., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos [Institutional and personal meaning of mathematical objects]. Recherches in Didactique des Mathématiques [Research in Mathematics Didactics], 14(3), 325-335.
Hernández, R., Fernández, C., & Baptista, M. (2010). Metodología de la investigación [Investigation methodology]. McGraw Hill.
Iori, M. (2017). Objects, signs, and representations in the semio-cognitive analysis of the processes involved in teaching and learning mathematics: A Duvalian perspective. Educational Studies in Mathematics, 94(3), 275-291.
Peirce, C. S. (1986). La ciencia de la semiótica [The science of semiotics]. In Epistemolgía y semiótica [Epistemology and semiotics]. Nueva visón.
Vergnaud, G. (1998). A comprehensive theory of representation for mathematics education. Journal of Mathematical Behavior, 17(2), 167-181.
Weiskopf, D. A. (2008). The origins of concepts. Philosophical Studies, 140(3), 359-384.
Journals System - logo
Scroll to top