The concept of pH and its logarithmic scale: A Micro Bit experience through inquiry, modeling, and computational thinking
More details
Hide details
Department of Integrated Didactics, Faculty of Education and Sports Sciences, University of Huelva, Huelva, SPAIN
Faculty of Education in Sombor, University of Novi Sad, Novi Sad, SERBIA
Online publication date: 2024-03-22
Publication date: 2024-04-01
EURASIA J. Math., Sci Tech. Ed 2024;20(4):em2424
The present work describes an educational experience carried out in a secondary school in Spain, where the case of Tinto River is presented as a learning scenario to understand the concept of pH and its logarithmic scale. Through the use and programming of controller boards (Micro Bit) and sensors, this study aims to address the underlying level of abstraction and alternative conceptions related to these topics. The intention is to provide practical examples for the development of a teaching-learning sequence based on inquiry, modeling, and computational thinking. This sequence addresses a current socio-scientific issue, while also considering students’ comments, and considering the Spanish digital competence model. The analysis includes an evaluation of its strengths, weaknesses, opportunities, and threats. The results indicate that the sequence can be highly motivating in understanding the concepts presented and in acquiring digital competencies. However, it also reveals limitations in terms of time required and the complexity of its design.
Aksela, M. K. (2011). Engaging students for meaningful chemistry learning through microcomputer-based laboratory (MBL) inquiry. Educació Química [Chemical Education], 9, 30-37.
Arroyo Mora, E., & Cuenca López, J. M. (2021). Patrimonios controversiales y educación ciudadana a través del museo en educación infantil [Controversial heritage and citizen education through the museum in early childhood education]. Revista Interuniversitaria de Formación del Profesorado [Interuniversity Journal of Teacher Training], 96(35.3), 109-128.
Benzer, A. I., & Unal, S. (2021). Models and modelling in science education in Turkey: A literature review. Journal of Baltic Science Education, 20(3), 344-359.
Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). El pensamiento computacional en la enseñanza obligatoria [Computational thinking in compulsory education] (computhink) by INTEFP Europa–Developing computational thinking in compulsory education–Implications for policy and practice.
Caamaño, A. (2011). Física y química: Investigación, innovación y buenas prácticas [Physics and chemistry: Research, innovation and good practices]. Graó.
Campina-López, A., Marín, A. A. L., & Pérez, M. Á. de las H. (2023). Análisis para la implementación conjunta de metodologías para el desarrollo de la investigación y la resolución de problemas en las aulas de ciencias [Analysis for the joint implementation of methodologies for the development of research and problem solving in science classrooms]. Ápice. Revista de Educación Científica [Apex. Science Education Magazine], 7(1).
Couso, D., Jiménez-Liso, M. R., Refojo, C., & Sacristán, J. A. (2020). Enseñando ciencia con ciencia [Teaching science with science]. FECYT.
Cuenca López, J. M. (2014). El papel del patrimonio en los centros educativos: Hacia la socialización patrimonial [The role of heritage in educational centers: Towards heritage socialization]. Tejuelo: Didáctica de la Lengua y la Literatura [Didactics of Language and Literature], 19, 76-96.
Dewi, C. A., Pahriah, P., & Purmadi, A. (2021). The urgency of digital literacy for generation Z students in chemistry learning. International Journal of Emerging Technologies in Learning, 16(11), 88-103.
Hammerman, E. L. (2006). 8 essentials of inquiry-based science, K-8. Corwin Press.
Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387.
Kala, N., Yaman, F., & Ayas, A. (2013). The effectiveness of predict-observe-explain technique in probing students’ understanding about acid-base chemistry: A case for the concepts of pH, pOH, and strength. International Journal of Science and Mathematics Education, 11(3), 555-574.
Lin, J.-W., & Chiu, M.-H. (2007). Exploring the characteristics and diverse sources of students’ mental models of acids and bases. International Journal of Science Education, 29(6), 771-803.
LOE. (2020). BOE-A-2020-17264 ley orgánica 3/2020, de 29 de diciembre, por la que se modifica la ley orgánica 2/2006, de 3 de mayo, de educación [BOE-A-2020-17264 organic law 3/2020, of December 29, which modifies organic law 2/2006, of May 3, on education].
López-Banet, L., Perales, F.-J., & Jimenez-Liso, M. R. (2021). STEAM views from a need: The case of the chewing gum and pH sensopill (Miradas STEAM desde la necesidad: El caso de la sensopíldora chicles y pH). Journal for the Study of Education and Development, 44(4), 909-941.
Lorca Marín, A. A., Sevilla Barceló, G., & Delgado Algarra, E. J. (2021). El efecto invernadero, principio y fin en la formación de profesores de secundaria. Una experiencia con Arduino a través de indagación [The greenhouse effect, beginning and end in the training of secondary school teachers. An experience with Arduino through inquiry]. In Proceedings of the 29 Didactic Meetings of Experimental Sciences and 5th Doctoral Schools (pp. 180-188).
Martínez-Chico, M., López-Gay, R., Jiménez-Liso, M. R., & Oller, M. T. (2017). Una propuesta integrada para la formación inicial de maestros: Desde el aprendizaje de ciencias mediante indagación y modelización a la competencia para enseñar ciencias [An integrated proposal for the initial training of teachers: From learning science through inquiry and modeling to the competence to teach science]. Science Teaching: Journal of Research and Teaching Experiences, 2017, 115-122.
Morris, H. (2014). Socio-scientific issues and multi-disciplinarity in school science textbooks. International Journal of Science Education, 36(7), 1137-1158.
NASA. (2018). Rio Tinto, Spain–NASA.
Park, N., & Ko, Y. (2012). Computer education’s teaching-learning methods using educational programming language based on STEAM education. In J. J. Park, A. Zomaya, S.-S. Yeo, & S. Sahni (Eds.), Network and parallel computing (pp. 320-327). Springer.
PNCD. (2023). Modelo de las competencias digitales de la ciudadanía Española [Model of the digital competencies of Spanish citizens].
Susilaningsih, E., Nuswowati, M., & Natasukma, M. M. (2020). Profile of misconception in particulate level of acid basic subjects. IOP Conference Series: Materials Science and Engineering, 830(4), 042082.
Treagust, D. F., Chittleborough, G. D., & Mamiala, T. L. (2004). Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34(1), 1-20.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2014). Defining computational thinking for science, technology, engineering, and math [Poster presentation]. The Annual Meeting of the American Educational Research Association.
Journals System - logo
Scroll to top