University teachers’ didactic-mathematical knowledge for teaching the effect of coefficient b on the quadratic function
More details
Hide details
Department of Linguistic, Scientific, & Mathematics Education, Faculty of Education, University of Barcelona, Barcelona, SPAIN
Online publication date: 2023-11-05
Publication date: 2023-12-01
EURASIA J. Math., Sci Tech. Ed 2023;19(12):em2370
Literature shows a tendency to relegate the role of coefficient b to second place in the teaching of the quadratic function. We report an experience with Chilean university teachers, who designed a teaching and learning sequence with this function for construction engineering students. Our focus was on the didactic-mathematical knowledge about the effects of varying coefficient b on the graphical representation of this function that the participating teachers made evident. We constituted a focus group with 10 teachers and then qualitatively analyzed their dialogues using the mathematics teacher’s didactic-mathematical knowledge and competencies model. We highlight the following results: (a) the importance of mathematical knowledge and that of the epistemic facet to interpret the effect of coefficient b on the graphical representation of the quadratic function and (b) the proposal of an interpretation for the graphical behavior of coefficient b that contributes to the teaching of the quadratic function.
Arana-Pedraza, R. A., Ibarra, S. E., & Font, V. (2019, May 5–10). Conocimientos y competencias didáctico-matemáticas del profesor de matemáticas en ingeniería: Un primer acercamiento [Mathematics teacher’ didactic-mathematical knowledge and competencies in engineering: A first approach] [Paper presentation]. Inter-American Conference on Mathematics Education, Medellin, Colombia.
Araya, D., Pino-Fan, L. R., Medrano, I. G., & Castro, W. F. (2021). Epistemic criteria for designing limit tasks on a real variable function. Bolema: Boletim de Educação Matemática [Bulletin: Mathematics Education Bulletin], 35(69), 179-205.
Breda, A., Font, V., & Pino-Fan, L. (2018). Criterios valorativos y normativos en la Didáctica de las Matemáticas: El caso del constructo idoneidad didáctica [Evaluative and normative criteria in Didactics of Mathematics: The case of didactic suitability construct]. BOLEMA: Boletim de Educação Matemática, 32(60), 255-278.
Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: Criteria for the reflection and assessment on teaching practice. EURASIA Journal of Mathematics Science and Technology Education, 13(6), 1893-1918.
Breda, A., Pochulu, M., Sánchez, A., & Font, V. (2021). Simulation of teacher interventions in a training course of mathematics teacher educators. Mathematics, 9(24), 3228.
Burns-Childers, A., & Vidakovic, D. (2018). Calculus students’ understanding of the vertex of the quadratic function in relation to the concept of derivative. International Journal of Mathematical Education in Science and Technology, 49(5), 660-679.
Clement, L. L. (2001). What do students really know about functions? The Mathematics Teacher, 94(9), 745-748.
Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. Routledge.
Davis, J. D. (2012). Investigating the effects of parameters on quadratic functions. The Mathematics Teacher, 106(1), 64-69.
Denscombe, M. (2014). The good research guide. Open University Press.
Díaz, V., Aravena, M., & Flores, G. (2020). Solving problem types contextualized to the quadratic function and error analysis: A case study. EURASIA Journal of Mathematics, Science and Technology Education, 16(11), em1896.
Garcés, W. (2021). Análisis de las pautas que rigen la práctica del profesor en la enseñanza de derivadas en ciencias básicas en carreras de ingeniería [Analysis of the guidelines governing the teacher’s practice in the teaching of derivatives in basic sciences in engineering careers]. REDIMAT: Journal of Research in Mathematics Education, 10(3), 239-268.
García-García, J. (2019). Escenarios de exploración de conexiones matemáticas [Exploration scenarios of mathematical connections]. Números: Revista de Didáctica de las Matemáticas [Numbers: Magazine of Mathematics Didactics], 100, 129-133.
Gibbs, A. (2012). Focus groups and group interviews. In J. Arthur, M. Waring, R. Coe, & L. V. Hedges (Eds.), Research methods and methodologies in education (pp. 186-192). SAGE.
Godino, J. D. (2009). Categorías de análisis de los conocimientos del profesor de matemáticas [Analysis categories of the mathematics teacher’s knowledge]. UNIÓN: Revista Iberoamericana de Educación Matemática [UNION: Ibero-American Magazine of Mathematics Education], 20, 13-31.
Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM – Mathematics Education, 39(1–2), 127-135.
Graf, E. A., Fife, J. H., Howell, H., & Marquez, E. (2018). The development of a quadratic functions learning progression and associated task shells. ETS Research Report Series, 2018(1), ETS RR-18-47.
Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400.
Hydén, L.-C., & Bülow, P. H. (2003). Who’s talking: Drawing conclusions from focus groups–Some methodological considerations. International Journal of Social Research Methodology, 6(4), 305-321.
Kleiner, I. (1989). Evolution of the function concept: A brief survey. The College Mathematics Journal, 20(4), 282-300.
Kunter, M., Kleickmann, T., Klusmann, U., & Richter, D. (2013). The development of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project (pp. 63-77). Springer.
Ledezma, C., Breda, A., & Font, V. (2023). Prospective teachers’ reflections on the inclusion of mathematical modelling during the transition period between the face-to-face and virtual teaching contexts. International Journal of Science and Mathematics Education. Advanced online publication.
Ledezma, C., Sol, T., Sala-Sebastià, G., & Font, V. (2022). Knowledge and beliefs on mathematical modelling inferred in the argumentation of a prospective teacher when reflecting on the incorporation of this process in his lessons. Mathematics, 10(18), 3339.
Mallart, A., Font, V., & Diez, J. (2018). Case study on mathematics pre-service teachers' difficulties in problem posing. EURASIA Journal of Mathematics, Science and Technology Education, 14(4), 1465-1481.
Morgan, D. L. (1988). Focus groups as qualitative research. SAGE.
Neubrand, M. (2018). Conceptualizations of professional knowledge for teachers of mathematics. ZDM–Mathematics Education, 50(4), 601-612.
Ninow, V., & Kaiber, C. T. (2019). Affine function: An analysis from the perspective of the epistemic and cognitive suitability of the onto-semiotic approach. Acta Scientiae [Journal of Science], 21(6), 130-149.
Ozaltun Celik, A., & Bukova Guzel, E. (2017). Revealing Ozgur’s thoughts of a quadratic function with a clinical interview: Concepts and their underlying reasons. International Journal of Research in Education and Science, 3(1), 122-134.
Parra-Urrea, Y., & Pino-Fan, L. (2022). Proposal to systematize the reflection and assessment of the teacher’s practice on the teaching of functions. Mathematics, 10(18), 3330.
Petrou, M., & Goulding, M. (2011). Conceptualizing teachers’ mathematical knowledge in teaching. In T. Rowland, & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 9-25). Springer.
Pino-Fan, L. R., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. EURASIA Journal of Mathematics, Science and Technology Education, 11(6), 1429-1456.
Pino-Fan, L. R., Castro, W. F., & Font, V. (2023). A macro tool to characterize and develop key competencies for the mathematics teacher’s practice. International Journal of Science and Mathematics Education, 21(5), 1407-1432.
Pino-Fan, L., & Godino, J. D. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del profesor [An expanded view of teachers’ didactic-mathematical knowledge]. Paradigma [Paradigm], 36(1), 87-109.
Pino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematics Teacher Education, 21(1), 63–94.
Pino-Fan, L., & Parra-Urrea, Y. (2021). Criterios para orientar el diseño y la reflexión de clases sobre funciones: ¿Qué nos dice la literatura científica? [Criteria to guide the design and reflection on lessons about functions: What does scientific literature say?] Uno: Revista de Didáctica de las Matemáticas [One: Journal of Mathematics Didactics], 91, 45-54.
Pino-Fan, L., Parra-Urrea, Y., & Castro, W. F. (2019). Significados de la función pretendidos por el currículo de matemáticas chileno [Intended meanings of function in the Chilean mathematics curriculum]. Magis: Revista Internacional de Investigación en Educación [Magis: International Journal of Education Research], 11(23), 201-220.
Ramírez, R., Cañadas, M. C., & Damián, A. (2022). Structures and representations used by 6th graders when working with quadratic functions. ZDM–Mathematics Education, 54(6), 1393-1406.
Rowland, T. (2013). The knowledge quartet: The genesis and application of a framework for analyzing mathematics teaching and deepening teachers’ mathematics knowledge. Sisyphus–Journal of Education, 1(3), 15-43.
Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281.
Schoenfeld, A. H., & Kilpatrick, J. (2008). Towards a theory of proficiency in teaching mathematics. In D. Tirosh, & T. Woods (Eds.), The international handbook of mathematics teacher education Vol. 2: Tools and processes in mathematics teacher education (pp. 321-354). Sense Publishers.
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23.
Journals System - logo
Scroll to top