How Do Students Understand Energy in Biology, Chemistry, and Physics? Development and Validation of an Assessment Instrument
 
More details
Hide details
1
CREATE for STEM Institute
 
2
Leibniz Institute for Science and Mathematics Education.
 
3
Leibniz Institute for Science and Mathematics Education
 
 
Publication date: 2017-06-15
 
 
Corresponding author
Sebastian Tobias Opitz   

CREATE for STEM Institute, 620 Farm Lane, MI-48824 Lansing, United States
 
 
EURASIA J. Math., Sci Tech. Ed 2017;13(7):3019-3042
 
KEYWORDS
TOPICS
ABSTRACT
Background:
Science standards of different countries introduced disciplinary core ideas and crosscutting concepts—such as energy—to help students develop a more interconnected science understanding. As previous research has mostly addressed energy learning in specific disciplinary contexts, this study targets students’ cross-disciplinary understanding of energy.

Material and methods:
Since no respective test instrument was available, we present the development and validation of an instrument that can be used to compare students’ progressing energy understanding across contexts from biology, chemistry, and physics. In a cross-sectional study, we administered the new instrument to N = 752 students at the end of grades 6, 8, and 10.

Results:
In addition to a detailed discussion of the instrument’s reliability and validity, the study findings compare progressing energy understanding in the three disciplinary contexts.

Conclusions:
With regard to energy as a crosscutting concept, the results are then used to discuss how students’ energy understanding may be connected across disciplinary boundaries.

 
REFERENCES (65)
1.
American Association for the Advancement in Science (2007). Getting Assessment Right. 2061 Today, 17(1), 1-7.
 
2.
Alonzo, A. C., & Gotwals, A. W. (2012). Learning Progressions in Science - Current Challenges and Future Directions. Rotterdam: Sense Publishers.
 
3.
Bevilacqua, F. (2014). Energy: Learning from the Past. Science & Education, 23(6), 1231-1243. doi:10.1007/s11191-014-9690-1.
 
4.
Bodzin, A. (2012). Investigating Urban Eighth-Grade Students' Knowledge of Energy Resources. International Journal of Science Education, 34(8), 1255-1275.
 
5.
Boyes, E., & Stanisstreet, M. (1990). Pupils' Ideas Concerning Energy Sources. International Journal of Science Education, 12(5), 513-529. doi:10.1080/0950069900120505.
 
6.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn: Brain, Mind, Experience and School. Washington, D.C.: National Academy Press.
 
7.
Burger, J. (2001). Schülervorstellungen zu "Energie im biologischen Kontext" - Ermittlungen, Analysen und Schlussfolgerungen. [Student conceptions concerning energy in biological contexts: Research, analysis and conclusions]. (Unpublished doctoral dissertation). University of Bielefeld, Bielefeld/Germany.
 
8.
Chabalengula, V., Sanders, M., & Mumba, F. (2011). Diagnosing Students' Understanding of Energy and Its Related Concepts in Biological Contexts. International Journal of Science and Mathematics Education, 10(2), 241-266. doi: 10.1007/s10763-011-9291-2.
 
9.
Chen, B., Eisenkraft, A., Fortus, D., Krajcik, J. S., Neumann, K., Nordine, J., & Scheff, A. (2014). Teaching and Learning of Energy in K-12 Education. New York: Springer.
 
10.
Dawson-Tunik, T. L. (2006). Stage-Like Patterns in the Development of Conceptions of Energy. In X. F. Liu & W. Boone (Eds.), Applications of Rasch Measurement in Science Education (pp. 111-136). Maple Grove, MN: JAM Press.
 
11.
Doménech, J., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., . . . Vilches, A. (2007). Teaching of Energy Issues: A Debate Proposal for a Global Reorientation. Science & Education, 16(1), 43-64. doi:10.1007/s11191-005-5036-3.
 
12.
Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making Sense of Secondary Science: Supporting Material for Secondary Teachers. London: Routledge.
 
13.
Duit, R. (1984). Learning the Energy Concept in School - Empirical Results from the Philippines and West Germany. Physics Education, 19(2), 59-66. doi:10.1088/0031-9120/19/2/306.
 
14.
Ericsson, K. A. & Simon, H. A. (1993). Protocol Analysis: Verbal Reports as Data. Cambridge: MIT Press.
 
15.
Field, A. (2009). Discovering Statisticcs Using SPSS (Thrid Ed. ed.). London: Sage Publications.
 
16.
Forde, T. (2003). "When I Am Watching Television I Am Not Using Any Energy" - An Empirical Study of Junior Science Students' Intuitive Concepts of Energy. Irish Educational Studies, 22(3), 71-89.
 
17.
Fortus, D., & Krajcik, J. (2012). Curriculum Coherence and Learning Progressions. In B. J. Fraser, K. Tobin & C. J. McRobbie (Eds.), Second International Handbook of Science Education (pp. 783-798). Springer: Netherlands.
 
18.
Fortus, D., Sutherland, L., Reiser, B. J., & Krajcik, J. S. (2015). Assessing the Role of Curriculum Coherence in Student Learning About Energy. Journal of Research in Science Teaching, 52(10), 1408-1425. doi:10.1002/tea.21261.
 
19.
Herrmann-Abell, C. F., & DeBoer, G. E. (2011). Investigating Students’ Understanding of Energy Transformation, Energy Transfer, and Conservation of Energy Using Standards-Based Assessment Items. Paper presented at the NARST Annual International Conference. Orlando, USA.
 
20.
Hirça, N., Çalik, M., & Akdeniz, F. (2008). Investigating Grade 8 Students' Conceptions of 'Energy' and Related Concepts. Journal of Turkish Science Education, 5(1), 75-87.
 
21.
Horn, W. (1983). Leistungsprüfsystem - LPS (Vol. 2). [Intelligence test LPS] Rosdort/Göttingen: Hogrefe.
 
22.
Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149-1180. doi:10.1002/tea.21051.
 
23.
Joint Committee (2014). Standards for Educational and Psychological Testing. Washington, D.C.: American Education Research Association (AERA).
 
24.
Kirk, R. E. (1996). Practical Significance: A Concept Whose Time Has Come. Educational and Psychological Measurement, 56(5), 746-759. doi:10.1177/0013164496056005002.
 
25.
KMK - Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2005a). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss - Beschluss vom 16.12.2004. [German middle school learning standards for biology]. München: Luchterhand.
 
26.
KMK - Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2005b). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss: Beschlussvom 16.12.2004. [German middle school learning standards for chemistry]. München: Luchterhand.
 
27.
KMK - Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2005c). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss Beschluss vom 16.12. 2004.[German middle school learning standards for physics]. München: Luchterhand.
 
28.
Krajcik, J. S., Sutherland, L. A., Drago, K., & Merritt, J. (2012). The Promise and Value of Learning Progression Research. In S. Bernholt, K. Neumann & P. Nentwig (Eds.), Making it tangilbe: Learning outcomes in science education (pp. 261-283). Münster: Waxmann.
 
29.
Kurnaz, M. A., & Sağlam-Arslan, A. (2011). A Thematic Review of Some Studies Investigating Students’ Alternative Conceptions About Energy. Eurasian Journal of Chemistry and Physics Education, 3(1), 51-74.
 
30.
Lacy, S., Tobin, R., Wiser, M., & Crissman, S. (2014). Looking Through the Energy Lens: A Proposed Learning Progression for Energy in Grades 3-5. In B. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine & A. Scheff (Eds.), Teaching and Learning of Energy in K-12 Education. Cham Heidelberg New York Dordrecht London: Springer.
 
31.
Lancor, R. A. (2015). An Analysis of Metaphors Used by Students to Describe Energy in an Interdisciplinary General Science Course. International Journal of Science Education, 1-27. doi: 10.1080/09500693.2015.1025309.
 
32.
Lee, H.-S., & Liu, O. L. (2009). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94(4), 665-688. doi:10.1002/sce.20382.
 
33.
Lerner, R. G., & Trigg, G. L. (2005). Encyclopedia of Physics Volume 1 (A-L). Weinheim: Wiley-VCH.
 
34.
Lin, C.-Y., & Hu, R. (2003). Students' understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25(12), 1529-1544. doi:10.1080/0950069032000052045.
 
35.
Linn, M. C., Eylon, B.-S., & Davis, E. A. (2004). The Knowledge Integration Perspective on Learning and Instruction. In M. C. Linn, E. A. Davids & P. Bell (Eds.), Internet Environments for Science Education (pp. 29-46). Mahwah, NJ: Lawrence Erlbaum.
 
36.
Liu, X., Ebenezer, J., & Fraser, D. M. (2002). Structural characteristics of university engineering students' conceptions of energy. Journal of Research in Science Teaching, 39(5), 423-441. doi: 10.1002/tea.10030.
 
37.
Liu, X., & McKeough, A. (2005). Developmental growth in students' concept of energy: Analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42(5), 493-517. doi: 10.1002/tea.20060.
 
38.
Liu, X., & Ruiz, M. E. (2008). Using data mining to predict K–12 students' performance on large-scale assessment items related to energy. Journal of Research in Science Teaching, 45(5), 554-573. doi:10.1002/tea.20232.
 
39.
Maletta, H. (2007). Weighting. Retrieved March 25th, 2015, from http://www.spsstools.net/Tutor....
 
40.
Marzano, R. J. (2003). What Works in Schools: Translating Research into Action. Alexandria, VA, USA: Association for Supervision and Curriculum Development.
 
41.
Messick, S. (1995). Validity of Psychological Assessment: Validation of Inferences From Persons' Responses and Performances as Scientific Inquiry Into Score Meaning. American Psychologist, 50(9), 741-749. doi: 10.1002/j.2333-8504.1994.tb01618.x.
 
42.
Michaelis, S., Shouse, A. W., & Schweingruber, H. A. (2008). Ready, Set, Science! Putting Research to Work in K-8 Science Classrooms. Washington, D.C.: The National Academic Press.
 
43.
Millar, R. (2005). Teaching about Energy: Research Paper 2005/11. York, University of York, Department of Educational Studies.
 
44.
Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a Learning Progression of Energy. Journal of Research in Science Teaching, 50(2), 162-188.
 
45.
Nordine, J., Krajcik, J., & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670-699. doi:10.1002/sce.20423.
 
46.
NGSS (Lead States) (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.
 
47.
Novak, J. D. (2005). Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning. Research in Science Education, 35(1), 23-40. doi:10.1007/s11165-004-3431-4.
 
48.
Opitz, S., Harms, U., Neumann, K., Kowalzik, K., & Frank, A. (2015). Students' Energy Concepts at the Transition between Primary andSecondary School. Research in Science Education, 49(5), 691-715. doi:10.1007/s11165-014-9444-8.
 
49.
Opitz, S., Neumann, K., Bernholt, S., & Harms, U. (2016). Energy – a Crosscutting Concept? The Structure of Students’ Progressing Energy Understanding in Biology, Chemistry and Physics. In S.T. Opitz, Students’ Progressing Understanding of the Energy Concept: An Analysis of Learning in Biological and Cross-Disciplinary Contexts (pp.66-92). Doctoral thesis, University of Kiel/Germany. Available at: http://macau.uni-kiel.de/recei....
 
50.
Papadouris, N. K., T & Constantinou, C.P. (2014). An Exploratory Investigation of 12-Year-Old Students' Ability to Appreciate Certain Aspects of the Nature of Science through a Specially Designed Approach in the Context of Energy. International Journal of Science Education, 36(5), 755-782. doi:10.1080/09500693.2013.827816.
 
51.
Park., M. (2013). Developing an Instrument for Assessing Students' Understanding of the Energy Concept Across Science Disciplines. (Unpublished doctoral dissertation). University of Buffalo, Buffalo, New York/USA. Retrieved from http://search.proquest.com/pao....
 
52.
Park, M., & Liu, X. (2016). Assessing Understanding of the Energy Concept in Different Science Disciplines. Advance online publication. Science Education. doi:10.1002/sce.21211.
 
53.
Pugh, K. J., & Bergin, D. A. (2006). Motivational Influences on Transfer. Educational Psychologist, 41(3), 147-160. doi:10.1207/s15326985ep4103_2.
 
54.
Quinn, H. (2014). A Physicist's Musings on Teaching Energy. In B. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine & A. Scheff (Eds.), Teaching and Learning of Energy in K-12. New York: Springer.
 
55.
Ross, P. M. T., Charlotte E. ; Hughes, Chris ; Whitaker, Noel ; Lutze-Mann, Louise ; Kofod, Michelle ;Tzioumis, Vicky. (2010). Threshold Concpets in Learnring Biology and Evolution. Biology International, 47, 47-52.
 
56.
Sakschewski, M., Eggert, S., Schneider, S., & Bögeholz, S. (2014). Students’ Socioscientific Reasoning and Decision-making on Energy-related Issues—Development of a measurement instrument. International Journal of Science Education, 36(14), 2291-2313. doi:10.1080/09500693.2014.920550.
 
57.
Shultz, T. R., & Coddington, M. (1981). Development of the concepts of energy conservation and entropy. Journal of Experimental Child Psychology, 31(1), 131-153.
 
58.
Stacy, A. M., Chang, K., Coonrod, J., & Claesgens, J. (2014). Launching the Space Shuttle by Making Water: The Chemist's View of Energy. In J. S. Krajcik, B. Chen, A. Eisenkraft, D. Fortus, K. Neumann, J. Nordine & A. Scheff (Eds.), Teaching and Learning Energy in K-12 Energy Education. New York: Springer.
 
59.
Tastan, Ö. Y., Eylem, & Boz, Y. (2008). Effectiveness of Conceptual Change Text-oriented Instruction on Students' Understanding of Energy in Chemical Reactions. Journal of Science Education and Technology, 17(5), 444-453. doi:10.1007/s10956-008-9113-7.
 
60.
Tatar, E., & Oktay, M. (2007). The effectiveness of problem-based learning on teaching the first law of thermodynamics. Research in Science & Technological Education, 29(3), 315-332.
 
61.
Trumper, R. (1993). Children's energy concepts: a cross-age study. International Journal of Science Education, 15(2), 139-148. doi:10.1080/0950069930150203.
 
62.
Wang, L., Wang, W., & Wei, R. (2014). What Knowledge and Ability Should High School Students Have for Understanding Energy in Chemical Reactions? An Analysis of Chemistry Curriculum Standards in Seven Countries and Regions In R. Chen, A. Eisenkraft, D. Fortus, J. S. Krajcik, K. Neumann, J. Nordine & A. Scheff (Eds.), Teaching and Learning of Energy in K-12 Education. New York: Springer.
 
63.
Watts, D. M. (1983). Some alternative views of energy. Physics Education, 18(5), 213. doi:10.1088/0031-9120/18/5/307.
 
64.
Wernecke, U. (2013). Erfassung des Schülerverständnisses von Energie - Validierung eines quantitativen Erhebungsinstruments durch die Methode des Lauten Denkens. [Assessing students' energy understanding. Validating a quantiative assment tool via think-aloud protocols]. (Unpulblished master thesis). Kiel University, Kiel/Germany.
 
65.
Wu, M. L., Adams, R. J., & Wilson, M. R. (2007). ACER ConQuest version 2.0: generalized item response modelling software. Camberwell, VIC: Acer Press.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top